Что значит взаимно перпендикулярные. Значение взаимно перпендикулярный в словаре русского языка лопатина

Если стороны прямого угла являются прямыми общего положения, то прямой угол на каждую из трех плоскостей проекций (П 1 ,П 2 , и П 3) проецируется с искажением (частные случаи рассмотрены в начале главы). При построении проекций такого угла следует исходить из следующих положений:
1) если две прямые взаимно перпендикулярны, то через каждую из них можно провести плоскость, перпендикулярную к другой прямой;
2) если прямая перпендикулярна к плоскости, то она перпендикулярна любой прямой, принадлежащей этой плоскости.
Таким образом, построение взаимно перпендикулярных прямых общего положения в конечном счете сводится к построению плоскости, перпендикулярной к заданной прямой общего положения.
Рассмотрим решения некоторых задач.
1. Построить прямую a, перпендикулярную заданной прямой n общего положения.
Рис. 2.19

Чтобы построить прямую, перпендикулярную к данной прямой, необходимо провести плоскость, перпендикулярную к этой прямой, и в этой плоскости провести любую прямую.
Решение задачи дано на чертеже (рис. 2.19). Через произвольную точку А пространства проведена плоскость (h f) n, и в этой плоскости построена произвольная прямая а(а 1 , а 2). Прямая а n, так как а n.
2. Из точки А опустить перпендикуляр на прямую b общего положения.
Решение задачи дано на чертеже (рис. 4.20).
Рис. 2.20

Искомая прямая (АК) b является результатом пересечения двух плоскостей: плоскости b, проходящей через точку А, и плоскости , проходящей через прямую b и точку А. Задача относится к числу комплексных, подробное объяснение ее решения дано в разделе "Комплексные задачи".

Взаимно перпендикулярные плоскости

Если плоскость проходит через прямую линию, перпендикулярную к другой плоскости (или параллельна этой прямой), то она перпендикулярна к этой плоскости. Следовательно, плоскость , перпендикулярную данной плоскости , можно построить:



1) либо как плоскость, проходящую через прямую, перпендикулярную плоскости ;
2) либо как плоскость, перпендикулярную одной из прямых, принадлежащих плоскости .

В обоих случаях задача имеет бесчисленное множество решений, если на плоскость не наложено каких-либо дополнительных условий.
Рис. 4.21

На чертеже (рис. 4.21) плоскость (m n) (а b) проведена через прямую m(m 1 ,m 2), перпендикулярную плоскости (а b).
Прямая n(n 1 ,n 2), пересекающая прямую m в точке М, выбрана произвольно.
Примечание. Если требуется провести плоскость , перпендикулярную данной плоскости (а b) и проходящую через заданную прямую n(n 1 ,n 2), то плоскость является единственным решением.
На чертеже (рис. 4.22) плоскость (h b) (a b) проведена перпендикулярно прямой b(b 1 ,b 2), принадлежащей плоскости , и задана поэтому горизонталью h и фронталью f.
Рис. 4.22

Примечания: 1. Если плоскость (h f) провести перпендикулярно горизонтали, принадлежащей плоскости (а b), то плоскость расположится перпендикулярно к плоскостям и П 1 т. е. будет горизонтально проецирующей.
2. Если плоскость (h f) провести перпендикулярно фронтали, принадлежащей плоскости (а b), то плоскость расположится перпендикулярно к плоскостям и П 2 , т. е. будет фронтально проецирующей.
Плоскость, перпендикулярная одновременно двум заданным плоскостям, может быть построена:
1) либо как плоскость, перпендикулярная линии их пересечения;
2) либо как плоскость, проходящая через перпендикуляры к ним, построенные из одной точки пространства.

Методическая разработка для студентов технических специальностей

«СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА»

3.1. Общие положения
3.2. Способ замены плоскостей проекций
3.3. Способ вращения

ОБЩИЕ ПОЛОЖЕНИЯ

Во многих случаях трудоемкость решения задачи зависит не столько от сложности ее условия, сколько от положения заданных геометрических фигур относительно плоскостей проекций. Во всех случаях, когда заданные геометрические фигуры являются проецирующими, решение задачи, как правило, упрощается, Такое положение геометрических фигур относительно плоскостей проекций, при котором мы непосредственно по чертежу получаем ответ на поставленный в задаче вопрос, называется наивыгоднейшим. Например, по рис. 3.1, б можно сразу определить расстояние между параллельными прямыми а и б, а по рис. 3.1, а, этого сделать нельзя.
Рис. 3.1

Таким образом, при решении той или иной задачи бывает целесообразно преобразовать чертеж так, чтобы заданные геометрические фигуры оказались бы в наивыгоднейшем положении относительно плоскостей проекций. Для этого существуют различные способы преобразования комплексного чертежа. Каждый из них основан на одном из следующих принципов:
1) на изменении положения плоскостей проекций относительно неподвижных геометрических фигур; 2) на изменении положения заданных геометрических фигур относительно неподвижных плоскостей проекций; 3) на изменении направления проецирования, т. е. на замене ортогонального проецирования косоугольным или центральным на одну из старых плоскостей проекций или на какую-нибудь новую. Рассмотрим некоторые из них.


В этой статье подробно рассмотрим на плоскости и в трехмерном пространстве. Начнем с определения перпендикулярных прямых, покажем обозначения и приведем примеры. После этого приведем необходимое и достаточное условие перпендикулярности двух прямых и детально разберем решения характерных задач.

Навигация по странице.

Перпендикулярные прямые – основные сведения.

Пример.

В прямоугольной системе координат Oxy заданы три точки . Перпендикулярны ли прямые АВ и АС ?

Решение.

Векторы и являются направляющими векторами прямых АВ и АС . Обратившись к статье , вычисляем . Векторы и перпендикулярны, так как . Таким образом, выполняется необходимое и достаточное условие перпендикулярности прямых АВ и АС . Следовательно, прямые АВ и АС перпендикулярны.

Ответ:

Да, прямые перпендикулярны.

Пример.

Являются ли прямые и перпендикулярными?

Решение.

Направляющий вектор прямой , а - направляющий вектор прямой . Вычислим скалярное произведение векторов и : . Оно отлично от нуля, следовательно, направляющие векторы прямых не перпендикулярны. То есть, не выполняется условие перпендикулярности прямых, поэтому, исходные прямые не перпендикулярны.

Ответ:

Нет, прямые не перпендикулярны.

Аналогично, необходимое и достаточное условие перпендикулярности прямых a и b в прямоугольной системе координат Oxyz в трехмерном пространстве имеет вид , где и - направляющие векторы прямых a и b соответственно.

Пример.

Перпендикулярны ли прямые, заданные в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями и ?

Решение.

Числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора прямой. А координатами направляющего вектора прямой, которая задана параметрическими уравнениями прямой в пространстве , являются коэффициенты при параметре. Таким образом, и - направляющие векторы заданных прямых. Выясним, перпендикулярны ли они: . Так как скалярное произведение равно нулю, то эти векторы перпендикулярны. Значит, выполняется условие перпендикулярности заданных прямых.

Ответ:

Прямые перпендикулярны.

Для проверки перпендикулярности двух прямых на плоскости существуют другие необходимые и достаточные условия перпендикулярности.

Теорема.

Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы нормальный вектор прямой a был перпендикулярен нормальному вектору прямой b .

Озвученное условие перпендикулярности прямых удобно использовать, если по заданным уравнениям прямых легко находятся координаты нормальных векторов прямых. Этому утверждению отвечает общее уравнение прямой вида , уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом .

Пример.

Убедитесь, что прямые и перпендикулярны.

Решение.

По заданным уравнениям прямых легко найти координаты нормальных векторов этих прямых. – нормальный вектор прямой . Перепишем уравнение в виде , откуда видны координаты нормального вектора этой прямой: .

Векторы и перпендикулярны, так как их скалярное произведение равно нулю: . Таким образом, выполняется необходимое и достаточное условие перпендикулярности заданных прямых, то есть, они действительно перпендикулярны.

В частности, если прямую a на плоскости определяет уравнение прямой с угловым коэффициентом вида , а прямую b – вида , то нормальные векторы этих прямых имеют координаты и соответственно, а условие перпендикулярности этих прямых сводится к следующему соотношению между угловыми коэффициентами .

Взаимно перпендикулярный

вза"имно перпендикул"ярный


Русский орфографический словарь. / Российская академия наук. Ин-т рус. яз. им. В. В. Виноградова. - М.: "Азбуковник" . В. В. Лопатин (ответственный редактор), Б. З. Букчина, Н. А. Еськова и др. . 1999 .

Смотреть что такое "взаимно перпендикулярный" в других словарях:

    взаимно-перпендикулярный - взаимно перпендикулярный … Орфографический словарь-справочник

    взаимно-перпендикулярный - взаи/мно перпендикуля/рный … Слитно. Раздельно. Через дефис.

    ВЕКТОР - В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера

    Гипербола (математика) - У этого термина существуют и другие значения, см. Гипербола. Гипербола и её фокусы … Википедия

    Поверхность - У этого термина существуют и другие значения, см. Поверхность (значения). Пример простой поверхности Поверхность традиционное название для двумерного многообразия в … Википедия

    Касательная плоскость

    Внутренняя геометрия поверхностей - Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия

    Внутренняя геометрия поверхности - Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия

    Внутренняя геометрия - Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия

    Нормальное сечение - Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия

В статье рассматривается вопрос о перпендикулярных прямых на плоскости и трехмерном пространстве. Определение перпендикулярных прямых и их обозначения с приведенными примерами подробно разберем. Рассмотрим условия применения необходимого и достаточного условия перпендикулярности двух прямых и подробно рассмотрим на примере.

Угол между пересекающимися прямыми в пространстве может быть прямым. Тогда говорят, что данные прямые перпендикулярные. Когда угол между скрещивающимися прямыми прямой, тогда прямые также являются перпендикулярными. Отсюда следует, что перпендикулярные прямые на плоскости пересекающиеся, а перпендикулярные прямые пространства могут быть пересекающимися и скрещивающимися.

То есть понятия «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» считаются равноправными. Отсюда и взялось понятие взаимно перпендикулярные прямые. Обобщив вышесказанное, рассмотрим определение.

Определение 1

Две прямые называют перпендикулярными, если угол при их пересечении дает 90 градусов.

Перпендикулярность обозначается « ⊥ », а запись принимает вид a ⊥ b , что значит, прямая a перпендикулярна прямой b .

Например, перпендикулярными прямыми на плоскости могут быть стороны квадрата с общей вершиной. В трехмерном пространстве прямые O x , O z , O y перпендикулярны попарно: O x и O z , O x и O y , O y и O z .

Перпендикулярность прямых – условия перпендикулярности

Свойства перпендикулярности необходимо знать, так как большинство задач сводится к его проверке для последующего решения. Бывают случаи, когда о перпендикулярности идет речь еще в условии задания или когда необходимо пользоваться доказательством. Для того, чтобы доказать перпендикулярность достаточно, чтобы угол между прямыми был прямым.

Для того, чтобы определить их перпендикулярность при известных уравнениях прямоугольной системы координат, необходимо применить необходимое и достаточное условие перпендикулярности прямых. Рассмотрим формулировку.

Теорема 1

Для того, чтобы прямые a и b были перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b .

Само доказательство основывается на определении направляющего вектора прямой и на определении перпендикулярности прямых.

Доказательство 1

Пусть введена прямоугольная декартова система координат О х у с заданными уравнениями прямой на плоскости, которые определяют прямые a и b . Направляющие векторы прямых a и b обозначим a → и b → . Из уравнения прямых a и b необходимым и достаточным условием является перпендикулярность векторов a → и b → . Это возможно только при скалярном произведении векторов a → = (a x , a y) и b → = (b x , b y) равном нулю, а запись имеет вид a → , b → = a x · b x + a y · b y = 0 . Получим, что необходимым и достаточным условием перпендикулярности прямых a и b , находящихся в прямоугольной системе координат О х у на плоскости, является a → , b → = a x · b x + a y · b y = 0 , где a → = (a x , a y) и b → = b x , b y - это направляющие векторы прямых a и b .

Условие применимо, когда необходимо найти координаты направляющих векторов или при наличии канонических или параметрических уравнений прямых на плоскости заданных прямых a и b .

Пример 1

Заданы три точки A (8 , 6) , B (6 , 3) , C (2 , 10) в прямоугольной системе координат О х у. Определить, прямые А В и А С перпендикулярны или нет.

Решение

Прямые А В и А С имеют направляющие векторы A B → и A C → соответственно. Для начала вычислим A B → = (- 2 , - 3) , A C → = (- 6 , 4) . Получим, что векторы A B → и A C → перпендикулярны из свойства о скалярном произведении векторов, равном нулю.

A B → , A C → = (- 2) · (- 6) + (- 3) · 4 = 0

Очевидно, что необходимое и достаточное условие выполнимо, значит, А В и А С перпендикулярны.

Ответ: прямые перпендикулярны.

Пример 2

Определить, заданные прямые x - 1 2 = y - 7 3 и x = 1 + λ y = 2 - 2 · λ перпендикулярны или нет.

Решение

a → = (2 , 3) является направляющим вектором заданной прямой x - 1 2 = y - 7 3 ,

b → = (1 , - 2) является направляющим вектором прямой x = 1 + λ y = 2 - 2 · λ .

Перейдем к вычислению скалярного произведения векторов a → и b → . Выражение будет записано:

a → , b → = 2 · 1 + 3 · - 2 = 2 - 6 ≠ 0

Результат произведения не равен нулю, можно сделать вывод, что векторы не перпендикулярны, значит и прямые также не перпендикулярны.

Ответ: прямые не перпендикулярны.

Необходимое и достаточное условие перпендикулярности прямых a и b применяется для трехмерного пространства, записывается в виде a → , b → = a x · b x + a y · b y + a z · b z = 0 , где a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b .

Пример 3

Проверить перпендикулярность прямых в прямоугольной системе координат трехмерного пространства, заданные уравнениями x 2 = y - 1 = z + 1 0 и x = λ y = 1 + 2 · λ z = 4 · λ

Решение

Знаменатели из канонических уравнений прямых считаются координатами направляющего вектора прямой. Координаты направляющего вектора из параметрического уравнения – коэффициенты. Отсюда следует, что a → = (2 , - 1 , 0) и b → = (1 , 2 , 4) являются направляющими векторами заданных прямых. Для выявления их перпендикулярности найдем скалярное произведение векторов.

Выражение примет вид a → , b → = 2 · 1 + (- 1) · 2 + 0 · 4 = 0 .

Векторы перпендикулярны, так как произведение равно нулю. Необходимое и достаточное условие выполнено, значит прямые также перпендикулярны.

Ответ: прямые перпендикулярны.

Проверка перпендикулярности может проводится, исходя из других необходимых и достаточных условий перпендикулярности.

Теорема 2

Прямые a и b на плоскости считаются перпендикулярными при перпендикулярности нормального вектора прямой a с вектором b , это и есть необходимое и достаточное условие.

Доказательство 2

Данное условие применимо, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых. То есть при наличии общего уравнения прямой вида A x + B y + C = 0 , уравнения прямой в отрезках вида x a + y b = 1 , уравнения прямой с угловым коэффициентом вида y = k x + b координаты векторов возможно найти.

Пример 4

Выяснить, перпендикулярны ли прямые 3 x - y + 2 = 0 и x 3 2 + y 1 2 = 1 .

Решение

Исходя их уравнений, необходимо найти координаты нормальных векторов прямых. Получим, что n α → = (3 , - 1) - это нормальный вектор для прямой 3 x - y + 2 = 0 .

Упростим уравнение x 3 2 + y 1 2 = 1 до вида 2 3 x + 2 y - 1 = 0 . Теперь четко видны координаты нормального вектора, которые запишем в такой форме n b → = 2 3 , 2 .

Векторы n a → = (3 , - 1) и n b → = 2 3 , 2 будут перпендикулярными, так как их скалярное произведение даст в итоге значение равное 0 . Получим n a → , n b → = 3 · 2 3 + (- 1) · 2 = 0 .

Необходимое и достаточное условие было выполнено.

Ответ: прямые перпендикулярны.

Когда прямая a на плоскости определена при помощи уравнения с угловым коэффициентом y = k 1 x + b 1 , а прямая b - y = k 2 x + b 2 , отсюда следует, что нормальные векторы будут иметь координаты (k 1 , - 1) и (k 2 , - 1) . Само условие перпендикулярности сводится к k 1 · k 2 + (- 1) · (- 1) = 0 ⇔ k 1 · k 2 = - 1 .

Пример 5

Выяснить, перпендикулярны ли прямые y = - 3 7 x и y = 7 3 x - 1 2 .

Решение

Прямая y = - 3 7 x имеет угловой коэффициент, равный - 3 7 , а прямая y = 7 3 x - 1 2 - 7 3 .

Произведение угловых коэффициентов дает значение - 1 , - 3 7 · 7 3 = - 1 , то есть прямые являются перпендикулярными.

Ответ: заданные прямые перпендикулярны.

Имеется еще одно условие, используемое для определения перпендикулярности прямых на плоскости.

Теорема 3

Для перпендикулярности прямых a и b на плоскости необходимым и достаточным условием является коллинеарность направляющего вектора одной из прямых с нормальным вектором второй прямой.

Доказательство 3

Условие применимо, когда есть возможность нахождения направляющего вектора одной прямой и координат нормального вектора другой. Иначе говоря, одна прямая задается каноническим или параметрическим уравнением, а другая общим уравнением прямой, уравнением в отрезках или уравнением прямой с угловым коэффициентом.

Пример 6

Определить, являются ли заданные прямые x - y - 1 = 0 и x 0 = y - 4 2 перпендикулярными.

Решение

Получаем, что нормальный вектор прямой x - y - 1 = 0 имеет координаты n a → = (1 , - 1) , а b → = (0 , 2) - направляющий вектор прямой x 0 = y - 4 2 .

Отсюда видно, что векторы n a → = (1 , - 1) и b → = (0 , 2) не коллинеарны, потому что условие коллинеарности не выполняется. Не существует такого числа t , чтобы выполнялось равенство n a → = t · b → . Отсюда вывод, что прямые не являются перпендикулярными.

Ответ: прямые не перпендикулярны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Перпендикулярностью называют соотношение между разнообразными объектами в евклидовом пространстве - прямыми, плоскостями, векторами, подпространствами и так далее. В настоящем материале мы более внимательно рассмотрим перпендикулярные прямые и характерные черты, к ним относящиеся. Две прямые могут быть названы перпендикулярными (или взаимоперпендикулярными), если все четыре угла, которые образованы их пересечением, составляют строго по девяносто градусов.

Существуют определенные свойства перпендикулярных прямых, реализованных на плоскости:


Построение перпендикулярных прямых

Перпендикулярные прямые строятся на плоскости с помощью угольника. Любой чертежник должен иметь в виду, что важной особенностью каждого угольника является то, что он обязательно имеет прямой угол. Чтобы создать две перпендикулярные прямые, нам необходимо совместить одну из двух сторон прямого угла нашего

чертежного угольника с данной прямой и провести вторую прямую вдоль второй стороны этого прямого угла. Таким образом будут созданы две перпендикулярные прямые.

Трехмерное пространство

Интересен тот факт, что перпендикулярные прямые могут быть реализованы и в В этом случае такими будут называться две прямые, если они параллельны соответственно каким-либо двух иным прямым, лежащим в той же плоскости и тоже перпендикулярным в ней. Кроме того, если на плоскости перпендикулярными могут быть лишь две прямые, то в трехмерном пространстве - уже три. Более того, в количество перпендикулярных линий (или же плоскостей) может быть еще больше увеличено.

2024 psy-logo.ru. Образование это просто.