Каким образом выделяется в атмосферу углекислый газ. Реферат: Влияние углекислого газа

Деятельность человека достигла уже таких масштабов, что общее содержание углекислого газа в атмосфере Земли достигло предельно допустимых значений. Природные системы - суша, атмосфера, океан, находятся под разрушительным воздействием.

Важные факты

Например, к ним относятся фторхлоруглеводороды. Эти примеси газов излучают и поглощают солнечную радиацию, что отражается на климате планеты. В совокупности СО 2 , иные газообразные соединения, оказывающиеся в атмосфере, называют парниковыми газами.

Историческая справка

Он предупреждал о том, что увеличение объемов сжигаемого топлива может привести к нарушению радиационного баланса Земли.

Современные реалии

Сегодня большее количество диоксида углерода в атмосферу поступает при сжигании топлива, а также в связи с теми изменениями, что происходят в природе из-за вырубки лесных угодий, увеличения площадей сельскохозяйственных угодий.

Механизм воздействия диоксида углерода на живую природу

Повышение содержания углекислого газа в атмосфере вызывает парниковый эффект. Если при коротковолновой солнечной радиации оксид углерода (IV) прозрачен, то длинноволновую радиацию он поглощает, излучая энергию по всем направлениям. В результате содержание углекислого газа в атмосфере существенно увеличивается, нагревается поверхность Земли, горячими становятся нижние слои атмосферы. При последующем увеличении количества диоксида углерода возможно глобальное изменение климата.

Именно поэтому важно прогнозировать общее содержание углекислого газа в атмосфере Земли.

Источники попадания в атмосферу

Среди них можно выделить промышленные выбросы. Содержание углекислого газа в атмосфере возрастанием в связи с антропогенными выбросами. Экономический рост напрямую зависит от количества сжигаемых природных ископаемых, так как многие производства являются энергозатратными предприятиями.

Результаты статистических исследований свидетельствуют о том, что с конца прошлого века во многих странах происходит снижение удельных затрат энергии при существенном росте цен на электроэнергию.

Эффективное ее использование достигается благодаря модернизации технологического процесса, транспортных средств, использованию новых технологий в строительстве производственных цехов. Некоторые развитые промышленные страны перешли от развития перерабатывающей и сырьевой отрасли к развитию тех направлений, которые занимаются изготовлением конечного продукта.

В крупных мегаполисах, обладающих серьезной производственной базой, выбросы диоксида углерода в атмосферу существенно выше, поскольку СО 2 часто является побочным продуктом отраслей, деятельность которых удовлетворяет запросы образования, медицины.

В развивающихся странах существенный рост использования высококачественного топлива на 1 жителя, считается серьезным фактором для перехода на более высокий уровень жизни. В настоящее время выдвигается идея, согласно которой продолжение экономического роста и повышение уровня жизни возможно без увеличения количества сжигаемого топлива.

В зависимости от региона содержание углекислого газа в атмосфере составляет от 10 до 35 %.

Связь между потребляемой энергией и выбросами СО2

Начнем с того, что энергия не производится только ради ее получения. В развитых промышленных странах большая ее часть используется в промышленности, для обогрева и охлаждения зданий, для транспорта. Исследования, проводимые крупными научными центрами, показали, что при использовании энергосберегающих технологий можно получить существенное снижение выбросов диоксида углерода в земную атмосферу.

Например, ученым удалось посчитать, что если бы США перешли на менее энергоемкие технологии при производстве товаров народного потребления, это бы позволило снизить количество углекислого газа, попадающего в атмосферу, на 25 %. В масштабах земного шара это позволило бы снизить проблему парникового эффекта на 7 %.

Углерод в природе

Анализируя проблему, касающуюся выбросов диоксида углерода в атмосферу Земли, отметим, что углерод, который входит в его состав, является жизненно важным для существования биологических организмов. Его способность образовывать сложные углеродные цепочки (ковалентные связи) приводит к появлению белковых молекул, необходимых для жизни. Биогенный цикл углерода является сложным процессом, поскольку в него входит не просто функционированием живых существ, но и перенос неорганических соединений между разными резервуарами углерода, а также внутри них.

К ним относится атмосфера, континентальная масса, в том числе почвы, а также гидросфера, литосфера. На протяжении двух последних столетий в системе биофера-атмосфера-гидросфера наблюдаются изменения потоков углерода, который по своей интенсивности существенно превышают скорость протекания геологических процессов переноса данного элемента. Именно поэтому нужно ограничиваться рассмотрением взаимоотношений внутри системы, включая и почву.

Серьезные исследования, касающиеся определения количественного содержания углекислого газа в земной атмосфере, стали проводиться с середины прошлого века. Первопроходцем в таких вычислениях стал Киллинг, работающий в известной обсерватории Мауна-Лоа.

Анализ наблюдений показал, что на изменения концентрации диоксида углерода в атмосфере влияет цикл фотосинтеза, деструкция растений на суше, а также годовое изменение температуры в Мировом океане. В ходе экспериментов удалось выяснить, что количественное содержание углекислого газ в северном полушарии существенно выше. Ученые предположили, что это связно с тем, что большая часть антропогенного поступления приходится именно на это земное полушарие.

Для проведения анализа были взяты без специальных методик, кроме того не учитывалась относительная и абсолютная погрешность вычислений. Благодаря анализу пузырьков воздуха, которые содержались в ледниковых кернах, исследователям удалось установить данные по содержанию в земной атмосфере углекислого газа в диапазоне 1750-1960 гг.

Заключение

На протяжении последних столетий произошли существенные изменения в континентальных экосистемах, причиной стало увеличение антропогенного воздействия. При повышении количественного содержания углекислого газа в атмосфере нашей планеты, возрастает парниковый эффект, что негативно отражается на существовании живых организмов. Именно поэтому важно переходить на энергосберегающие технологии, которые позволяют снижать поступление СО 2 в атмосферу.

1 Человек и климат.

2 Введение.

Взаимосвязь между энергопотреблением, экономической деятельностью и поступлением в атмосферу.

Потребление энергии и выбросы углекислого газа.

3 Углерод в природе.

Изотопы углерода.

4 Углерод в атмосфере.

Атмосферный углекислый газ.

Углерод в почве.

5 Прогнозы концентрации углекислого газа в атмосфере на будущее. Основные выводы.

6 Список литературы.


Введение.

Деятельность человека достигла уже такого уровня развития, при котором её влияние на природу приобретает глобальный характер. Природные системы - атмосфера, суша, океан, - а также жизнь на планете в целом подвергаются этим воздействиям. Известно, что на протяжении последнего столетия увеличивалось содержание в атмосфере некоторых газовых составляющих, таких, как двуокись углерода (), закись азота (), метан () и тропосферный озон (). Дополнительно в атмосферу поступали и другие газы, не являющиеся естественными компонентами глобальной экосистемы. Главные из них - фторхлоруглеводороды. Эти газовые примеси поглощают и излучают радиацию и поэтому способны влиять на климат Земли. Все эти газы в совокупности можно назвать парниковыми.

Представление о том, что климат мог меняться в результате выброса в атмосферы двуокиси углерода, появилось не сейчас. Аррениус указал на то, что сжигание ископаемого топлива могло привести к увеличению концентрации атмосферного и тем самым изменить радиационный баланс Земли. В настоящие время мы приблизительно известно, какое количество поступило в атмосферу за счёт сжигания ископаемого топлива и изменений в использовании земель (сведения лесов и расширения сельскохозяйственных площадей), и можно связать наблюдаемое увеличение концентрации атмосферного с деятельностью человека.

Механизм воздействия на климат заключается в так называемом парниковом эффекте. В то время как для солнечной коротковолновой радиации прозрачен, уходящую от земной поверхности длинноволновую радиацию этот газ поглощает и излучает поглощённую энергию по всем направлениям. Вследствие этого эффекта увеличение концентрации атмосферного приводит к нагреву поверхности Земли и нижней атмосферы. Продолжающийся рост концентрации в атмосфере может привести к изменению глобального климата, поэтому прогноз будущих концентраций углекислого газа является важной задачей.

Поступление углекислого газа в атмосферу

в результате промышленных

выбросов.

Основным антропогенным источником выбросов является сжигание всевозможных видов углеродосодержащего топлива. В настоящее время экономическое развитие обычно связывается с ростом индустриализации. Исторически сложилось, что подъём экономики зависит от наличия доступных источников энергии и количества сжигаемого ископаемого топлива. Данные о развитии экономики и энергетики для большинства стран за период 1860-1973 гг. Свидетельствуют не только об экономическом росте, но и о росте энергопотребления. Тем не менее одно не является следствием другого. Начиная с 1973 года во многих странах отмечается снижение удельных энергозатрат при росте реальных цен на энергию. Недавнее исследование промышленного использования энергии в США показало, что начиная с 1920 года отношение затрат первичной энергии к экономическому эквиваленту производимых товаров постоянно уменьшалось. Более эффективное использование энергии достигается в результате совершенствования промышленной технологии, транспортных средств и проектирования зданий. Кроме того, в ряде промышленно развитых стран произошли сдвиги в структуре экономики, выразившиеся в переходе от развития сырьевой и перерабатывающей промышленности к расширению отраслей, производящих конечный продукт.

Минимальный уровень потребления энергии на душу населения, необходимый в настоящее время для удовлетворения нужд медицины, образования и рекреации, значительно меняется от региона к региону и от страны к стране. Во многих развивающихся странах значительный рост потребления высококачественных видов топлива на душу населения является существенным фактором для достижения более высокого уровня жизни. Сейчас представляется вероятным, что продолжение экономического роста и достижение желаемого уровня жизни не связаны с уровнем энергопотребления на душу населения, однако этот процесс ещё недостаточно изучен.

Можно предположить, что до достижения середины следующего столетия экономика большинства стран сумеет приспособиться к повышенным ценам на энергию, уменьшая потребности в рабочей силе и в других видах ресурсов, а также увеличивая скорость обработки и передачи информации или, возможно, изменяя структуру экономического баланса между производством товаров и предоставлением услуг. Таким образом, от выбора стратегии развития энергетики с той или иной долей использования угля или ядерного топлива в энергетической системе будет непосредственно зависеть скорость промышленных выбросов .

Потребление энергии и выбросы

углекислого газа.

Энергия не производится ради самого производства энергии. В промышленно развитых странах основная часть вырабатываемой энергии приходится на промышленность, транспорт, обогрев и охлаждение зданий. Во многих недавно выполненных исследованиях показано, что современный уровень потребления энергии в промышленно развитых станах может быть существенно снижен за счёт применения энергосберегающих технологий. Было рассчитано, что если бы США перешли, при производстве товаров широкого потребления и в сфере услуг, на наименее энергоёмкие технологии при том же объёме производства, то количество поступающего в атмосферу уменьшилось бы на 25%. Результирующее уменьшение выбросов в целом по земному шару при этом составило бы 7%. Подобный эффект имел бы место и в других промышленно развитых странах. Дальнейшего снижения скорости поступления в атмосферу можно достичь путём изменения структуры экономики в результате внедрения более эффективных методов производства товаров и усовершенствований в сфере предоставления услуг населению.

Углерод в природе.

Среди множества химических элементов, без которых невозможно существование жизни на Земле, углерод является главным.Химические превращения органических веществ связаны со способностью атома углерода образовывать длинные ковалентные цепи и кольца. Биогеохимический цикл углерода, естественно, очень сложный, так как он включает не только функционирование всех форм жизни на Земле, но и перенос неорганических веществ как между различными резервуарами углерода, так и внутри них. Основными резервуарами углерода являются атмосфера, континентальная биомасса, включая почвы, гидросферу с морской биотой и литосферой. В течение последних двух столетий в системе атмосфера - биосфера - гидросфера происходят изменения потоков углерода, интенсивность которых примерно на порядок величины превышает интенсивность геологических процессов переноса этого элемента. По этой причине следует ограничиться анализом взаимодействий в пределах этой системы, включая почвы.

Основные химические соединения и реакции.

Известно более миллиона углеродных соединений, тысячи из которых участвуют в биологических процессах. Атомы углерода могут находиться в одном из девяти возможных состояний окисления: от +IV до -IV. Наиболее распространённое явление - это полное окисление, т.е. +IV, примерами таких соединений могут служить и . Более 99% углерода в атмосфере содержится в виде углекислого газа. Около 97% углерода в океанах существует в растворённой форме (), а в литосфере - в виде минералов. Примером состояния окисления +II является малая газовая составляющая атмосферы , которая довольно быстро окисляется до . Элементарный углерод присутствует в атмосфере в малых количествах в виде графита и алмаза, а в почве - в форме древесного угля. Ассимиляция углерода в процессе фотосинтеза приводит к образованию восстановленного углерода, который присутствует в биоте, мёртвом органическом веществе почвы, в верхних слоях осадочных пород в виде угля, нефти и газа, захоронённых на больших глубинах, и в литосфере - в виде рассеянного недоокисленного углерода. Некоторые газообразные соединения, содержащие недоокисленный углерод , в частности метан, поступают в атмосферу при восстановлении веществ, происходящем в анаэробных процессах. Хотя при бактериальном разложении образуется несколько различных газообразных соединений, они быстро окисляются, и можно считать, что в систему поступает . Исключением является метан, поскольку он также влияет на парниковый эффект. В океанах содержится значительное количество растворённых соединений органического углерода, процессы окисления которых до известны ещё недостаточно хорошо.

Изотопы углерода.

В природе известно семь изотопов углерода, из которых существенную роль играют три. Два из них - и - являются стабильными, а один - - радиоактивным с периодом полураспада 5730 лет. Необходимость изучения различных изотопов углерода обусловлена тем, что скорости переноса соединений углерода и условия равновесия в химических реакциях зависят от того, какие изотопы углерода содержат эти соединения. По этой причине в природе наблюдается различное распределение стабильных изотопов углерода. Распределение же изотопа , с одной стороны, зависит от его образования в ядерных реакциях с участием нейтронов и атомов азота в атмосфере, а с другой - от радиоактивного распада.

Углерод в атмосфере.

Тщательные измерения содержания атмосферного были начаты в 1957 году Киллингом в обсерватории Мауна-Лоа. Регулярные измерения содержания атмосферного проводятся также на ряде других станций. Из анализа наблюдений можно заключить, что годовой ход концентрации обусловлен в основном сезонными изменениями цикла фотосинтеза и деструкции растений на суше; на него также влияет, хотя и меньшей степени, годовой ход температуры поверхности океана, от которого зависит растворимость в морской воде. Третьим, и, вероятно, наименее важным фактором является годовой ход интенсивности фотосинтеза в океане. Среднее за каждый данный год содержание в атмосфере несколько выше в северном полушарии, поскольку источники антропогенного поступления расположены преимущественно в северном полушарии. Кроме того, наблюдаются небольшие межгодовые изменения содержания , которые, вероятно, определяются особенностями общей циркуляции атмосферы. Из имеющихся данных по изменению концентрации в атмосфере основное значение имеют данные о наблюдаемом в течение последних 25 лет регулярном росте содержания атмосферного . Более ранние измерения содержания атмосферного углекислого газа (начиная с середины прошлого века) были, как правило, недостаточно полны. Образцы воздуха отбирались без необходимой тщательности и не производилась оценка погрешности результатов. С помощью анализа состава пузырьков воздуха из ледниковых кернов стало возможным получить данные для периода с 1750 по 1960 год. Было также выявлено, что определённые путём анализа воздушных включений ледников значения концентраций атмосферного для 50-х годов хорошо согласуются с данными обсерватории Мауна-Лоа. Концентрация в течение 1750-1800 годов оказалась близкой к значению 280 млн., после чего она стала медленно расти и к 1984 году составляла 3431 млн..

Углерод в почве.

По разным оценкам, суммарное содержание углерода составляет около

Г С. Главная неопределённость существующих оценок обусловлена недостаточной полнотой сведений о площадях и содержании углерода в торфяниках планеты.

Более медленный процесс разложения углерода в почвах холодных климатических зон приводит к большей концентрации углерода почв (на единицу поверхности) в бореальных лесах и травянистых сообществах средних широт по сравнению с тропическими экосистемами. Однако только небольшое количество (несколько процентов или даже меньше) детрита, поступающего ежегодно в резервуар почв, остаётся в них в течение длительного времени. Большая часть мёртвого органического вещества окисляется до за несколько лет. В чернозёмах около 98% углерода подстилки характеризуется временем оборота около 5 месяцев, а 2% углерода подстилки остаются в почве в среднем в течение 500-1000 лет. Эта характерная черта почвообразовательного процесса проявляется также в том, что возраст почв в средних широтах, определяемый радиоизотопным методом, составляет от нескольких сотен до тысячи лет и более. Однако скорость разложения органического вещества при трансформации земель, занятых естественной растительностью, в сельскохозяйственные угодья совершенно другая. Например, высказывается мнение, что 50% органического углерода в почвах, используемых в сельском хозяйстве Северной Америки, могло быть потеряно вследствие окисления, так как эти почвы начали эксплуатироваться до начала прошлого века или в самом его начале.

Изменения содержания углерода в

континентальных экосистемах.

За последние 200 лет произошли значительные изменения в континентальных экосистемах в результате возрастающего антропогенного воздействия. Когда земли, занятые лесами и травянистыми сообществами, превращаются в сельскохозяйственные угодья, органическое вещество, т.е. живое вещество растений и мёртвое органическое вещество почв, окисляется и поступает в атмосферу в форме . Какое-то количество элементарного углерода может также захораниваться в почве в виде древесного угля (как продукт, оставшийся от сжигания леса) и, таким образом, изыматься из быстрого оборота в углеродном цикле. Содержание углерода в различных компонентах экосистем изменяется, поскольку восстановление и деструкция органического вещества зависят от географической широты и типа растительности.

Были проведены многочисленные исследования, имевшие своей целью разрешить существующую неопределённость в оценке изменений запасов углерода в континентальных экосистемах. Основываясь на данных этих исследований, можно прийти к выводу о том, что поступление в атмосферу с 1860 по 1980 год составило г. С и что в 1980 году биотический выброс углерода был равен г. С/год. Кроме того, возможно влияние возрастающих атмосферных концентраций и выбросов загрязняющих веществ, таких, как и , на интенсивность фотосинтеза и деструкции органического вещества континентальных экосистем. По-видимому, интенсивность фотосинтеза растёт с увеличением концентрации в атмосфере. Наиболее вероятно, что этот рост характерен для сельскохозяйственных культур, а в естественных континентальных экосистемах повышение эффективности использования воды могло бы привести к ускорению образования органического вещества.

Прогнозы концентрации углекислого

газа в атмосфере на будущее.

Основные выводы.

За последние десятилетия было создано большое количество моделей глобального углеродного цикла, рассматривать которые в данной работе не представляется целесообразным из-за того, что они в достаточной мере сложны и объёмны. Рассмотрим лишь кратко основные их выводы. Различные сценарии, использованные для прогноза содержания в атмосфере в будущем, дали сходные результаты. Ниже приведёна попытка подвести общий итог наших сегодняшних знаний и предположений, касающихся проблемы антропогенного изменения концентрации в атмосфере.

· С 1860 по 1984 год в атмосферу поступило г. За счёт сжигания ископаемого топлива, скорость выброса в настоящее время (по данным на 1984 год) равна г. С/год.

· В течение этого же периода времени поступление в атмосферу за вырубки лесов и изменения характера землепользования составило г. С, интенсивность этого поступления в настоящее время равна г. С/год.

· С середины прошлого века концентрация в атмосфере увеличилась от до млн. в 1984 году.

· Основные характеристики глобального углеродного цикла хорошо изучены. Стало возможным создание количественных моделей, которые могут быть положены в основу прогнозов роста концентрации в атмосфере при использовании определённых сценариев выброса.

· Неопределённости прогнозов вероятных изменений концентрации в будущем, получаемых на основе сценариев выбросов, значительно меньше значительно меньше неопределённостей самих сценариев выбросов.

· Если интенсивность выбросов в атмосферу в течение ближайших четырёх десятилетий останется постоянной или будет возрастать очень медленно (не более 0,5% в год) и в более отдалённом будущем также будет расти очень медленно, то к концу XXI века концентрация атмосферного составит около 440 млн., т.е. не более, чем на 60% превысит доиндустриальный уровень.

· Если интенсивность выбросов в течение ближайших четырёх десятилетий будет возрастать в среднем на 1-2 % в год, т.е. также, как она возрастала с 1973 года до настоящего времени, а в более отдалённом будущем темпы её роста замедлятся, то удвоение содержания в атмосфере по сравнению с доиндустриальным уровнем произойдёт к концу XXI века.

Образование большого количества N2 обусловлено окислением аммиачно-водородной атмосферы молекулярным О2, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также N2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зеленые водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьезные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Одной из важнейших частей воздуха является углекислый газ. У земной поверхности углекислый газ содержится в переменных количествах, в среднем 0,03% по объему.

В атмосферу углекислый газ поступает в результате вулканической деятельности, разложения и гниения органических веществ, дыхания животных и растений, сжигания топлива. Основным регулятором содержания углекислого газа в атмосфере является мировой океан. Он поглощает и отдает в атмосферу около 20% от среднего содержания в атмосфере.

Несмотря на относительно небольшое его содержание в атмосфере, углекислый газ оказывает большое влияние на так называемый «парниковый эффект». Пропуская к земной поверхности коротковолновую солнечную радиацию, поглощая длинноволновое (тепловое) излучение, поступающее от земной поверхности, он способствует повышению температуры воздуха в нижележащих слоях атмосферы.

В эпоху индустриализации отмечается повышенное содержание углекислого газа антропогенного происхождения.

Под влиянием деятельности человека увеличивается содержание в атмосфере газов техногенного происхождения, например сернистого, окиси углерода, различных окислов азота.

Исключительно важную роль имеет озон, поглощающий неблагоприятную для живых организмов и растений часть ультрафиолетового излучения Солнца. У земной поверхности озон содержится в небольших количествах: образуется в результате грозовых разрядов. Наибольшее его количество в стратосфере (озоносфере) от 10 до 50 км с максимумом в слое на высотах 20-25 км. В этом слое под действием ультрафиолетового излучения Солнца двухатомные молекулы кислорода частично распадаются на атомы, последние, присоединяясь к не распавшимся двухатомным молекулам кислорода, образуют трехатомный озон. Одновременно с образованием озона идет обратный процесс.

Концентрация озона зависит от интенсивности образования и разрушения молекул озона. Содержание озона увеличивается от экватора к высоким широтам.

Важная составная часть воздуха - водяной пар, который поступает в атмосферу в результате испарения с водной поверхности, суши, при вулканических извержениях. В нижних слоях атмосферы содержится от 0,1 до 4% водяного пара. С высотой его содержание резко убывает.

Водяной пар активно участвует во многих термодинамических процессах, связанных с образованием облаков, туманов.

В атмосфере присутствуют аэрозоли - это твердые и жидкие частицы, находящиеся в воздухе во взвешенном состоянии. Некоторые из них, являясь ядрами конденсации, участвуют в процессе образования облаков, туманов.

К естественным аэрозолям относятся водяные капли и кристаллы льда, образующиеся при конденсации водяного пара; пыль, сажа, возникающие при лесных пожарах, почвенная, космическая, вулканическая пыль, соли морской воды. Также в атмосферу попадает большое количество аэрозолей искусственного происхождения - выбросы промышленных предприятий, автотранспорта и др.

Наибольшее количество аэрозолей содержится в нижних слоях атмосферы.

4. Строение атмосферы.

Масса атмосферы составляет 5.3* 105 т. В слое до 5,5 км

содержится 50%, до 25 км - 95% и до 30 км - 99% всей массы атмосферы. Тридцатикилометровый слой атмосферы составляет 1/200 или 0,05 радиуса Земли. На глобусе диаметром 40 см этот 30-километровый слой имеет толщину около 1 мм, т.е. атмосфера представляет тонкую пленку, покрывающую поверхность Земли.

Нижней границей атмосферы является земная поверхность, называемая в метеорологии подстилающей поверхностью. Четко выраженной верхней границы атмосфера не имеет. Она плавно переходит в межпланетное пространство.

За верхнюю границу атмосферы условно принимают высоту 1500-2000 км, выше которой находится земная корона .

Давление и плотность с высотой убывают: при давлении у земли 1013 гПа плотность равна 1,27*103 г/м3 , а на высоте 750 км плотность составляет 10-10 г/м3 .

Распределение физических свойств в атмосфере имеет слоистый характер, поскольку их изменение по высоте происходит во много раз интенсивнее, нежели в горизонтальном направлении. Так, вертикальные температурные градиенты в несколько сотен раз больше горизонтальных градиентов.

Расчленение атмосферы на слои делают по различным свойствам воздуха: по температуре, влажности, содержанию озона, по электропроводимости и т.п. Наиболее отчетливо различие слоев атмосферы проявляется в характере распределения температуры воздуха с высотой. По этому признаку выделяют пять основных слоев.

Страница 8 из 10

Роль углекислого газа в атмосфере Земли.

В последнее время наблюдается увеличение концентрации углекислого газа в воздухе, что ведет к изменению климата Земли .

Углерод (С) в атмосфере содержится в основном в виде углекислого газа (СО 2) и в небольшом количестве в виде метана (СН 4), угарного газа и других углеводородов.

Для газов атмосферы Земли применяют понятие «время жизни газа». Это время, за которое газ полностью обновляется, т.е. время, за которое в атмосферу поступает столько же газа, сколько в нем содержится. Так вот, для углекислого газа это время составляет 3-5 лет, для метана – 10-14 лет. СО окисляется до СО 2 в течение нескольких месяцев.

В биосфере значение углерода очень велико, так как он входит в состав всех живых организмов. В пределах живых существ углерод содержится в восстановленном виде, а вне пределов биосферы – в окисленном. Таким образом, формируется химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источники углерода в атмосфере Земли.

Источником первичной углекислоты являются вулканы , при извержении которых в атмосферу выделяется огромное количество газов. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма.

Также углерод поступает в атмосферу Земли в виде метана в результате анаэробного разложения органических остатков. Метан под воздействием кислорода быстро окисляется до углекислого газа. Основными поставщиками метана в атмосферу являются тропические леса и болота .

Миграция СО 2 в биосфере.

Миграция СО 2 протекает двумя способами:

— При первом способе СО 2 поглощается из атмосферы Земли в процессе фотосинтеза и участвует в образовании органических веществ с последующем захоронением в земной коре в виде полезных ископаемых: торфа, нефти, горючих сланцев.

— При втором способе углерод участвует в создании карбонатов в гидросфере. СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Геохимический круговорот углерода.

Извлечение углекислого газа из атмосферы.

Углекислый газ из атмосферы Земли извлекается зелеными растениями в процессе фотосинтеза, который осуществляется посредством пигмента хлорофилла, использующего энергию солнечного излучения . Полученный из атмосферы углекислый газ растения преобразуют в углеводы и кислород. Углеводы участвуют в образовании органических соединений растений, а кислород выделяется обратно в атмосферу.

Связывание углекислого газа.

В активном круговороте углерода участвует очень небольшая часть всей его массы. Огромное количество угольной кислоты законсервировано в виде ископаемых известняков и других пород. Между углекислым газом атмосферы Земли и водой океана , в свою очередь, существует подвижное равновесие.

Благодаря высокой скорости размножения растительные организмы (особенно низшие микроорганизмы и морской фитопланктон) продуцируют в год около 1,5-10 11 т углерода в виде органической массы, что соответствует 5,86-10 20 Дж (1,4-10 20 кал) энергии.

Растения частично поедаются животными, при отмирании которых органическое вещество отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим другим каустобиолитам — каменным углям, нефти, горючим газам.

В процессах распада органических веществ, их минерализации огромную роль играют бактерии (например, гнилостные), а также многие грибы (например, плесневые).

Основные запасы углерода находятся в связанном состоянии (в основном в составе карбонатов) в осадочных породах Земли, значительная часть растворена в водах океана, и относительно небольшая – присутствует в составе воздуха.

Отношение количеств углерода в литосфере, гидросфере и атмосфере Земли, по уточненным расчетам, составляет 28 570: 57: 1.

Как углекислый газ возвращается снова в атмосферу Земли?

Углекислый газ выделяется в атмосферу Земли:

— в процессе дыхания живых организмов и разложения их трупов, распада карбонатов, процессов брожения, гниения и горения;

— зеленые растения, днем поглощая углекислый газ из атмосферы в процессе фотосинтеза, ночью некоторую его часть возвращают обратно;

— в результате деятельности вулканов, газы которых состоят в основном из углекислого газа и паров воды. Современный вулканизм в среднем приводит к выделению 2·10 8 тонн CO 2 в год, что составляет величину менее 1 % от антропогенной эмиссии (выделенной в результате человеческой деятельности) ;

— в результате индустриальной деятельности человека, в последние годы занявшей особое место в круговороте углерода. Массовое сжигание ископаемого топлива ведет к возрастанию содержания углерода в атмосфере, так как только 57% процентов производимого человечеством углекислого газа перерабатывается растениями и поглощается гидросферой. Массовая вырубка лесов также ведет к увеличению концентрации углекислоты в воздухе.

Это была статья «Углекислый газ в составе атмосферы Земли. «. Далее читайте: «Аргон в составе атмосферы Земли — содержание в атмосфере 1%. «

Углекислый газ. В водной среде живые организмы кроме недостатка света, кислорода могут испытывал, недостаток доступной углекислоты, например, растения для фотосинтеза. Углекислота поступает в воду в результате растворения углекислого газа, содержащегося в воздухе, дыхания водных организмов, разложения органических остатков и высвобождения из карбонатов. Морская вода является пивным резервуаром углекислого газа, так как содержит от 40 до 50 см3 газа на литр в свободной или связанной форме, что в 150 раз превышает его концентрацию в атмосфере.[ ...]

Углекислый газ непрерывно потребляется зелеными растениями в процессе фотосинтеза. Зеленые растения ежегодно извлекают из атмосферы 16-1010 т углекислоты. Турбулентное перемешивание атмосферы приводит к тому, что существенных различий в концентрации С02 в разных районах Земли не наблюдается.[ ...]

БИОГАЗ - газ, близкий к природному газу, образующийся при сбраживании в анаэробных условиях навоза и органических остатков, после переработки сельскохозяйственной продукции и др. Примерный состав биогаза метан - 55-65%, углекислый газ - 35-45%, примеси азота, водорода, кислорода, сероводорода. Б. используется как топливо. На свалках, не оборудованных системами газового дренажа, Б. активно загрязняет приземную атмосферу; является причиной возникновения взрыво- и пожароопасных ситуаций.[ ...]

Дымовые газы, образующиеся в результате сжигания осадков, в основном состоят из паров воды и углекислого газа; возможно присутствие и других газовых компонентов, что в значительной мере влияет на схему очистки дымовых газов перед выбросом их в атмосферу.[ ...]

Дымовые газы котлов могут служить сырьем по производству различных полезных веществ для народного хозяйства. Вспомним, что в результате сгорания топлива в дымовых газах образуются окислы серы 802 и 803, окислы азота N0 и ТЧ02, углекислый газ С02, азот 1Ч2, водяные пары Н20 и летучая зола. Это основные вещества, из которых состоят дымовые газы.[ ...]

Парниковые газы - это газы, задерживающие инфракрасные лучи, которые нагревают поверхность Земли и атмосферу. Наиболее важными парниковыми газами являются пары воды, двуокись углерода, метан, окись азота, озон, фреоны. Парниковые газы могут иметь естественное (природное) и антропогенное происхождение. Соответственно следует различать естественный парниковый эффект и вклад в парниковый эффект, обусловленный газами, поступившими в атмосферу в результате человеческой деятельности. Двуокись углерода (С02) является основным антропогенным парниковым газом. Около 80% углекислого газа образуется в результате сжигания ископаемого топлива, остальная часть приходится на вырубку лесов, прежде всего тропических. Окись азота (N20) образуется при сжигании ископаемого топлива, биомассы, применения удобрений.[ ...]

Аналогично углекислому газу описанное выше влияние на атмосферу и климат Земли оказывают и другие газы: метан, диоксид азота, озон, фтористые углеводороды и водяной пар. Значительной проблемой при этом является длительное пребывание некоторых газов в атмосфере. В частности, срок пребывания полученного С02 в атмосфере составляет около 120 лет. Это означает, что образовавшиеся на сегодня выбросы будут оказывать отрицательное влияние на несколько поколений людей.[ ...]

Растворенные газы: кислород, сероводород, углекислый газ - резко интенсифицируют коррозионную активность сточных вод, что приводит не только к быстрому коррозионному износу нефтепромыслового оборудования и коммуникаций, но и к вторичному загрязнению сточных вод механическими примесями и продуктами коррозии.[ ...]

При тушении пожаров газами используют двуокись углерода, азот, аргон, дымовые или отработанные газы, пар. Их огнегасительное действие основано на разбавлении воздуха, то есть на снижении концентрации кислорода. При тушении пожаров используют углекислотные огнетушители (ОУ-5, ОУ-8, УП-2м), если в состав молекул горящего вещества входит кислород, щелочные и щелочноземельные металлы. Газ в огнетушителе находится под давлением до 60 атм. Для тушения электроустановок необходимо применять порошковые огнетушители (ОП-1, 0П-10), заряд которых состоит из бикарбоната натрия, талька и стеараторов железа, алюминия.[ ...]

В процессе фотосинтеза углекислый газ непрерывно потребляется зелеными растениями, однако в результате турбулентного перемешивания атмосферы содержание двуокиси углерода быстро выравнивается и существенных различий в ее концентрациях не наблюдается. Мощным регулятором углекислого газа является также вода океанов и морей: при избытке двуокиси углерода она связывается бикарбонатами воды, а при понижении ее парциального давления, наоборот, выделяется водной поверхностью при разложении бикарбонатов.[ ...]

В высоких концентрациях углекислый газ токсичен, но в природе такие концентрации встречаются редко. Низкое же содержание С02 тормозит процесс фотосинтеза. Для повышения скорости фотосинтеза в практике оранжерейного и тепличного хозяйства (в условиях закрытого грунта) нередко увеличивают искусственным путем концентрацию углекислого газа. Несмотря на высокое процентное содержание для большинства обитателей наземной среды азот воздуха является инертным газом, но такие микроорганизмы, как клубеньковые бактерии, азотобактерии, клостридии, обладают способностью связывать его и вовлекать в биологический круговорот.[ ...]

Увеличение концентрации углекислого газа приведет также к росту урожайности большинства культурных растений. Многочисленные натурные и лабораторные эксперименты по выращиванию растений в условиях повышенного содержания СО2 показали, что увеличение концентрации диоксида углерода способствует более быстрому росту растений, их биомассе и урожая. Например, согласно оценкам, масса лесов США с 1950 г. выросла на 30%, что, вероятно, вызвано ростом концентрации СО2. Напомним, что еще В. И. Вернадский называл диоксид углерода удобрением. Возросшая концентрация СО2 используется растениями в процессе фотосинтеза. Такой факт, вероятно, генетически обусловлен тем, что предки современных растений возникли и длительное время существовали в условиях концентрации СО2, значительно превосходящей современную. Вот таковы возможные и неоднозначные последствия глобального потепления на планете.[ ...]

Диоксид углерода (С02), или углекислый газ, - бесцветный газ с кисловатым запахом и вкусом, продукт полного окисления углерода. Является одним из парниковых газов.[ ...]

Извлекаемая из природного газа смесь кислых газов наполовину и более по объему состоит из сероводорода. Остальная часть включает углекислый газ и небольшие количества серооксида углерода и углеводороды (метан, этан). Эта смесь кислых газов с целью получения из нее элементной серы утилизируется обычно на месте очистки природного газа.[ ...]

Среди способов очистки отходящих газов на завершающей стадии перед сбросом их в атмосферу наибольшее распространение получили окислительные методы. Они осуществляются путем глубокого полного окисления органических примесей - углеводородов и кислородсодержащей органики - до углекислого газа и воды непосредственным прямым сжиганием и с использованием катализаторов процесса окисления . Термический способ более прост в аппаратурно-технологическом оформлении и не имеет специфических ограничений по составу и концентрациям загрязняющих примесей в очищаемом газе. Однако проведение этого процесса при температурах 600-900°С делает его весьма энергоемким (табл. В.З): расход условного топлива составляет 25 0 кг на 1000 м3 выбросов при рабочей температуре процесса 600-900°С.[ ...]

Систематические наблюдения за содержанием углекислого газа в атмосфере показывают его нарастание за последние десятилетня. Между тем хорошо известно, что углекислый газ действует в атмосфере, как стекло в оранжерее: он пропускает солнечную радиацию и не пропускает обратно инфракрасное (тепловое) излучение Земли и тем самым создает так называемый тепличный эффект.[ ...]

Парниковый эффект заключается в следующем; углекислый газ способствует проникновению к Земле коротковолнового излучения Солнца, а длинноволновое тепловое излучение Земли задерживается. В результате происходит длительный нагрев атмосферы.[ ...]

Инструментально доказано накопление в атмосфере углекислого газа на 0,4 % в гоп, метана на I % и окиси азота Л/0 на 0,2%. что обусловливает "парниковый эффект". Он состоит в том,что эти газы,попадая в атмосферу, затрудняют отдачу тепла с поверхности Земли и действуют как стекг или пленка теплице.[ ...]

Один из основных по массе за1 рязнителей атмосферы углекислый газ СО: Вместе с кислородом это один из биогенов атмосферы, который в основном контролируется биотой. В XX в. наблюдается рост концентрации углекислого газа в атмосфере, доля которого с начала века увеличилась почти на 25%, а за последние 40 лет на 13%. Оценим вклад России в увеличение концентрации СО: в а тмосфере. Данные о выбросах углекислого газа в результате сжигания ископаемого топлива в России получены из данных по бывгп. СССР, вклад которого в выбросы СО, весьма значителен (габл. 5).[ ...]

Одним из главных источников загрязнения атмосферы углекислым газом является автомобильный транспорт. Некоторые из путей борьбы с этим видом загряз нений будут рассмотрены в последующих главах этой книги.[ ...]

В атмосфере содержится - 0,03% С02, или 2,3-1012 т. Источником поступления углекислого газа в атмосферу являются вулканические газы, горячие ключи, дыхание человека, животных, растений и, наконец, сжигание человеком горючих ископаемых. Сжигание топлива вносит ежегодно в атмосферу не менее 1 -1010 т углекислоты. Примерно 1 -1011 т С02 непрерывно находится в обменном состоянии между атмосферой и океаном. Обмен углекислоты в поверхностных слоях океана происходит в течение 5-25 лет, в глубоких - в течение 200-1000 лет. Полный обмен С02 в атмосфере происходит за 300-500 лет.[ ...]

В настоящее время в атмосфере наблюдается рост содержания некоторых малых газов, таких как углекислый газ СО2, закись азота N20, метан СН4, озон О3, пары воды, хлорфторуглероды и другие галогенпроизводные углерода (фреоны). Эти так называемые парниковые газы, как и основные составляющие атмосферы (азот, кислород), пропускают к поверхности Земли видимую (световую) часть солнечного излучения оптического диапазона. Поглощаемая земной поверхностью солнечная энергия нагревает ее, что приводит к тепловому длинноволновому (инфракрасному1) излучению в окружающее пространство. Однако это излучение в значительной степени задерживается компонентами атмосферы и прежде всего парниковыми газами; часть тепла вновь отражается на поверхность Земли. Задержание тепловой энергии у приповерхностного слоя приводит к повышению его температуры («парниковый эффект»).[ ...]

Наиболее важными функциями леса являются производство кислорода и поглощение углекислого газа (табл. 6). Количество кислорода, поступающего в атмосферу, зависит от ряда факторов: вида леса, его возраста, плотности насаждений и его ярусности, региона мира. Эффект, получаемый от лесных массивов, по ряду оценок в 3-4 раза выше затрат на лесопосадки (табл. 7 и 8).[ ...]

Вместе с газообразными продуктами выдыхаемого воздуха в окружающее пространство организм выбрасывает пары и огромное количество мелких водяных частиц или капелек, которые образуются при акте выдыхания.[ ...]

В среднем городской воздух имеет на 0,01-0,02% С02 больше, чем вне города. Содержание углекислого газа в воздухе жилых помещений не должно превышать 0,1%. В высоких концентрациях С02 обладает наркотическим действием.[ ...]

Древесные породы испытывают угнетение, если в почве менее 9-12% кислорода и более 1% углекислого газа (объёмных %).[ ...]

Значения коэффициента X: для воздуха (естественные колебания содержания кислорода и углекислого газа в атмосферном воздухе) Х = 3 10‘6; для воды равнинных рек и озер Х2 -= (4 ± 0,2) 10"5; для биоты на основании данных о дисперсиях продукции биоценозов Хт, = 0,43 ■ /3, т.е, в зависимости от биоценозов от 0,03 до 1.[ ...]

Фотосинтез - это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах. Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе (рис. 70). Значение фотосинтеза гигантское. Отметим лишь, что он поставляет топливо (энергию) и атмосферный кислород, необходимые для существовария всего живого. Следовательно, роль фотосинтеза является планетарной.[ ...]

В поддержании равновесия природных систем исключительно велика роль лесов. Они поглощают углекислый газ и выделяют кислород, способствуют стабильности климата, сохранности рек и почв. Отсюда важнейшая стратегическая задача - охрана лесов. Как считают специалисты, леса в тех регионах, где они могут расти, должны покрывать одну пятую или даже одну четвертую часть территории. Пока же на всех континентах происходит уничтожение лесов. По некоторым данным, 25 лет назад леса покрывали 31% мировой суши, а в настоящее время - 27%.[ ...]

Воздушная, самая легкая оболочка земного шара - атмосфера - состоит из механической смеси газов (%): азота - 78,09, кислорода - 20,95, аргона - 0,93, углекислого газа - от 0,02 до 0,032, а также гелия, неона, ксенона, криптона, водорода, озона, аммиака, йода и других, на долю которых приходится около 0,01% всего ее объема. Около 4% объема атмосферы занимают пары воды и пыль.[ ...]

Большинство растений не может существовать без непрерывного притока кислорода к корням и вывода углекислого газа из почвы. Если изолировать почву от атмосферного воздуха, то кислород в ней израсходуется полностью через несколько суток. Следовательно, почвенный воздух обеспечивает живые организмы кислородом только при условии постоянного обмена с атмосферным воздухом. Процесс обмена почвенного воздуха с атмосферным называют газообменом или аэрацией.[ ...]

С 1880 по 1970 г. содержание С02 увеличилось с 290 ррм до 321 ррм (рис. 1.5). Интересным является сезонное изменение содержания углекислого газа в воздухе: большее зимой и меньшее летом - рис. 1.6, .[ ...]

По оценкам международных экспертов последствия от глобального потепления климата могут выразиться в удвоении содержания углекислого газа к 2030 году по сравнению с периодом до индустриализации и в повышении уровня моря на 25 - 140 см. Кроме этого, в атмосферном воздухе произойдет увеличение содержания хлорфторуглеродистых соединений.[ ...]

Жизнь на Земле существует за счет солнечной энергии. Свет - единственный на Земле пищевой ресурс, энергия которого, в соединении с углекислым газом и водой, рождает процесс фотосинтеза. Фотосинтезирующие растения создают органическое вещество, которым питаются травоядные животные, ими питаются плотоядные и т. д., в конечном итоге растения «кормят» весь остальной живой мир, т. е. солнечная энергия через растения как бы передается всем организмам.[ ...]

ПАРНИКОВЫЙ ЭФФЕКТ (ТЕПЛИЧНЫЙ ЭФФЕКТ) - потепление климата на Земле в результате увеличения содержания в приземном слое атмосферы пыли, углекислого газа, метана и фтор-хлоруглеводородных соединений технического происхождения (сжигание топлива, промышленные выбросы и т. п.), которые препятствуют длинноволновому тепловому излучению с поверхности Земли. Смесь пыли и газов действует как полиэтиленовая пленка над парником: хорошо пропускает солнечный свет, идущий к поверхности почвы, но задерживает рассеиваемое почвой тепло - в результате под пленкой создается теплый микроклимат.[ ...]

В современном газовом составе атмосферы, который отличается большим постоянством, содержится по объему (%): азота-78,08, кислорода-20,9, аргона - 0,93, углекислого газа - 0,031 и небольшое количество инертных газов. Наибрлее важная переменная составляющая атмосферы - пары (капельки) воды.[ ...]

Атмосфера - газовая оболочка Земли, ее масса составляет около 5,15-1015 т. Она состоит в основном из азота и кислорода. Из числа малых ио количеству газов выделяются углекислый газ и озон, задерживающий вредную для организмов ультрафиолетовую радиацию Солнца.[ ...]

В современном газовом составе атмосферы, который отличается большим постоянством, содержится по объему (%): азота 78,08, кислорода - 20,9, аргона - 0,93, углекислого газа 0,031 и небольшое количество инертных газов. Наиболее важная переменная составляющая атмосферы водяной пар. Пространственно-временная изменчивость его концентрации, а также непостоянство радиационного и светового режимов предопределяют резко дифференцированные условия функционирования природных экосистем. Несмотря на то что климатические контрасты в различных районах Земли сглаживаются благодаря циркуляции атмосферы и морским течениям, эта дифференциация весьма заметна.[ ...]

Второй цикл формируется за счет газообмена между атмосферой и океаносферой: гидрокарбонат-карбонатная система океанов находится в подвижном равновесии с углекислым газом атмосферы. Это равновесие зависит главным образом от парциального давления С02 в атмосфере и от температуры (раздел 1.3.2).[ ...]

Живые организмы создали на Земле почву, атмосферу и др. Например, судьба атмосферы полностью зависит от живых организмов: если они прекратят свое существование, то углекислый газ в атмосфере исчезнет всего через 21 год, а кислород - через 100 лет.[ ...]

Для нейтрализации любых щелочей применимы серная, соляная, азотная, фосфорная и другие кислоты. На практике обычно применяется техническая серная кислота. Для нейтрализации щелочных сточных вод можно использовать углекислый газ. Основным преимуществом нейтрализации углекислым газом является сравнительно низкая стоимость проведения процесса, т.к. для этой цели можно использовать С02 дымовых газов.[ ...]

Деятельность фотосинтетиков и постепенное выведение в литосферу части восстановленного органического вещества в форме углеводородов и других органических минералов имели результатом постепенное уменьшение содержания в атмосфере углекислого газа и увеличение содержания как в атмосфере, так и в водах океана свободного кислорода. По-видимому, где-то на уровне появления многоклеточных животных сформировался более эффективный по сравнению с бескислородным расщеплением органических веществ, таким как гликолиз, способ извлечения энергии с помощью кислородного дыхания.[ ...]

Наверное, много миллионов лет понадобилось для того, чтобы сложился и был отобран из множества случайно возникавших вариантов тот принцип генетического кода и синтеза белка, который стал единым для всего живого на Земле. Эта первичная биосфера развивалась в условиях восстановительных свойств среды и еще очень мало на нее влияла. Огромные запасы углекислого газа атмосферы не были еще вовлечены в биогенный круговорот, однако растворенные в водах океана органические вещества постепенно концентрировались, входя в состав живого вещества первичных организмов.[ ...]

Эти данные охватывают весь диапазон применяемого в России котельного оборудования, поэтому приведенные коэффициенты должны быть рекомендованы для использования во всех отраслях промышленности для расчета эмиссии от установок, сжигающих органическое топливо. Анализ коэффициентов эмиссии С02 показывает, что при переходе ТЭС на сжигание твердого топлива вместо природного газа эмиссия углекислого газа возрастает в 2,76/1,62 = 1,7 раза. Это обстоятельство необходимо учитывать при реализации планируемого изменения структуры топливно-энергетического баланса в сторону увеличения доли твердого топлива.[ ...]

Химическая эволюция органических веществ неорганического происхождения привела в конце концов к возникновению первичных белков и нуклеиновых кислот, структурно-информационное взаимодействие которых оказалось основой фундаментальных свойств живого - наследственности и изменчивости. С этого момента началась собственно органическая эволюция, создававшая все более сложные и многочисленные виды живых организмов. К тому времени, когда Земля могла начать перегреваться излучением стабилизировавшегося Солнца, на ней уже возникли фотосинтезирующие растения. Количество углекислого газа в атмосфере стало уменьшаться, и тепловое излучение получило возможность покидать Землю, в результате чего температура на большей части ее поверхности остается пригодной для существования жизни уже многие сотни миллионов лет. Земля с ее биосферой представляет собой саморегулирующуюся систему.[ ...]

По-видимому, первичные организмы использовали в качестве источника энергии для синтеза собственных веществ энергию, освобождавшуюся при гидролизе других органических веществ. Это вело к постепенному исчерпанию ресурсов первичного органического вещества и было чревато гибелью недавно зародившейся на Земле жизни. Наверное, это был первый в истории нашей планеты экологический кризис глобального масштаба. Мы не можем за отсутствием данных судить о том, какой степени напряженности он достиг, прежде чем появились и начали быстро совершенствоваться биофизические и биохимические механизмы и соответствующие структуры, способные использовать внешние источники энергии - энергию химических реакций и света - для синтеза сложных органических веществ на основе углекислого газа и воды.[ ...]

На безопасном от огня расстоянии, шагов на 200 или более от неп>, в зависимости от скорости огня и параллельно линии главного хода его, без срубания больших деревьев, но с удалением молодняка, устраивается высокий и широкий вал из горючего материала, представленного сухими ветвями, хворостом и пересохшей лесной подстилкой. По обе стороны вала почва очищается от горючего материала. При пожаре сильно нагретый воздух подымается кверху, вследствие чего на некотором расстоянии от движущегося огня образуется большая тяга воздуха. Когда огонь приблизится к заготовленному валу на такое расстояние, что брошенные сухие листья или клочки бумаги понесутся в сторону пожара, расставленные вдоль вала цепью на расстоянии 5-15 м друг от друга рабочие по знаку руководителя, работ сразу зажигают вал и пускают встречный огонь, который порывисто устремляется к движущемуся пожару. Бушующее пламя взвивается до самой вершины деревьев. Сначала кажется, что пожар усилился, но через несколько минут два потока огня в схватке уничтожают весь горючий материал, резко уменьшают запас кислорода воздуха в полосе своей встречи, наполняют пространство углекислым газом и дымом, и огонь стихает.

2024 psy-logo.ru. Образование это просто.