Метод сопряженных направлений пауэлла. Сопряженные направления Метод сопряженных направлений

Определение . Направление, определяемое ненулевым вектором называется асимптотическимнаправлением относительно линии второго порядка, если любая прямая этого направления (то есть параллельная вектору ) либо имеет с линией не более одной общей точки, либо содержится в этой линии.

? Сколько общих точек может быть у линии второго порядка и прямой асимптотического направления относительно этой линии?

В общей теории линий второго порядка доказывается, что если

То ненулевой вектор ( задаёт асимптотическое направление относительно линии

(общий критерий асимптотического направления ).

Для линий второго порядка

если , то нет асимптотических направлений,

если то существует два асимптотических направления,

если то существует только одно асимптотическое направление.

Полезной оказывается следующая лемма (критерий асимптотического направления линии параболического типа ).

Лемма . Пусть - линия параболического типа.

Ненулевой вектор имеет асимптотическое направление

относительно . (5)

(Задача. Доказать лемму.)

Определение . Прямая асимптотического направления называется асимптотой линии второго порядка, если эта прямая либо не пересекается с , либо содержится в ней.

Теорема . Если имеет асимптотическое направление относительно , то асимптота, параллельная вектору , определяется уравнением

Заполняем таблицу.

ЗАДАЧИ .

1. Найти векторы асимптотических направлений для следующих линий второго поря дка:

4 - гиперболического типа два асимптотических направления.

Воспользуемся критерием асимптотического направления:

Имеет асимптотическое направление относительно данной линии 4 .

Если =0, то =0, то есть - нулевой. Тогда Поделим на Получаем квадратное уравнение: , где t = . Решаем это квадратное уравнение и находим два решения: t = 4 и t = 1. Тогда асимптотические направления линии .

(Можно рассмотреть два способа, так как линия – параболического типа.)

2. Выясните, имеют ли оси координат асимптотические направления относительно линий второго порядка:

3. Напишите общее уравнение линии второго порядка, для которой

а) ось абсцисс имеет асимптотическое направление;

б) Обе оси координат имеют асимптотические направления;

в) оси координат имеют асимптотические направления и О – центр линии.

4. Напишите уравнения асимптот для линий:

а) ng w:val="EN-US"/>y=0"> ;

5. Докажите, что если линия второго порядка имеет две непараллельные асимптоты, то их точка пересечения является центром данной линии.

Указание: Так как есть две непараллельные асимптоты, то существует два асимптотических направления, тогда , а, значит, линия – центральная.

Запишите уравнения асимптот в общем виде и систему для нахождения центра. Всё очевидно.

6.(№920) Напишите уравнение гиперболы, проходящей через точку А(0, -5) и имеющей асимптоты х – 1 = 0 и 2х – y + 1 = 0.

Указание . Воспользуйтесь утверждением предыдущей задачи.

Домашнее задание . , №915(в,д,е), №916 (в,г,д), №920 (если не успели);

Шпаргалки;

Силаев, Тимошенко. Практические задания по геометрии,

1 семестр. С.67, вопросы 1-8, с.70, вопросы 1-3 (устно).

ДИАМЕТРЫ ЛИНИИ ВТОРОГО ПОРЯДКА.

СОПРЯЖЕННЫЕ ДИАМЕТРЫ.

Дана аффинная система координат .

Определение. Диаметром линии второго порядка, сопряженным вектору не асимптотического направления относительно , называется множество середин всех хорд линии , параллельных вектору .

На лекции доказано, что диаметр – это прямая и получено её уравнение

Рекомендации : Показать (на эллипсе), как строится (задаём не асимптотическое направление; проводим [две] прямые этого направления, пересекающие линию; находим середины отсекаемых хорд; проводим через середины прямую – это и есть диаметр).

Обсудить:

1. Почему в определении диаметра берётся вектор не асимптотического направления. Если не могут ответить, то попросите построить диаметр, например, для параболы.

2. Любая ли линия второго порядка имеет хотя бы один диаметр? Почему?

3. На лекции доказано, что диаметр – это прямая. Серединой какой хорды является точка М на рисунке?


4. Посмотрите на скобки в уравнении (7). Что они напоминают?

Вывод: 1) каждый центр принадлежит каждому диаметру;

2) если существует прямая центров, то существует единственный диаметр.

5. Какое направление имеют диаметры линии параболического типа? (Асимптотическое)

Доказательство (наверно, на лекции).

Пусть диаметр d, заданный уравнением (7`) сопряжен вектору не асимптотического направления. Тогда его направляющий вектор

(-(), ). Покажем, что этот вектор имеет асимптотическое направление. Воспользуемся критерием вектора асимптотического направления для линии параболического типа (см.(5)). Подставляем и убеждаемся (не забываем, что .

6. Сколько диаметров у параболы? Их взаимное расположение? Сколько диаметров у остальных линий параболического типа? Почему?

7. Как построить общий диаметр некоторых пар линий второго порядка (см. вопросы 30, 31 далее).

8. Заполняем таблицу, обязательно делаем рисунки.

1. . Напишите уравнение множества середин всех хорд, параллельных вектору

2. Напишите уравнение диаметра d, проходящего через точку К(1,-2) для линии .

Этапы решения :

1-й способ .

1. Определяем тип (чтобы знать, как ведут себя диаметры этой линии).

В данном случае линия центральная, тогда все диаметры проходят через центр С.

2. Составляем уравнение прямой, проходящей через две точки К и С. Это и есть искомый диаметр.

2-й способ .

1. Записываем уравнение диаметра d в виде (7`).

2. Подставив в это уравнение координаты точки К, находим зависимость между координатами вектора, сопряженного диаметру d.

3. Задаём этот вектор, учитывая найденную зависимость, и составляем уравнение диаметра d.

В данной задаче вычислять проще вторым способом.

3. . Напишите уравнение диаметра, параллельного оси абсцисс.

4. Найдите середину хорды, отсекаемой линией

на прямой x + 3y – 12 =0.

Указание к решению : Конечно, можно найти точки пересечения данных прямой и линии , а затем – середину полученного отрезка. Желание сделать так отпадает, если взять, к примеру, прямую с уравнением х +3у – 2009 =0.

Высокая скорость сходимости метода Ньютона обусловлена тем, что он минимизирует квадратичную функцию

Где А – симметрическая положительно определенная матрица размера nxn , за один шаг. Квазиньютоновские методы позволяют найти минимум квадратичной функции за шагов. На стремлении минимизировать квадратичную функцию за конечно число шагов основана идея метода сопряженных направлений. Точнее говоря, в методах сопряженных направлений требуется найти направлениятакие, что последовательностьодномерных минимизаций вдоль этих направлений приводит к отысканию минимума функции 2.1, т. е.при любом, где

Оказывается, что указаным свойством обладает система взаимно сопряженных относительно матрицы А направлений

Пусть А – симетрическая положительно определенная матрица размера .

Определение 2.1. Векторы (направления) иназываются сопряженными (относительно матрицы А), если они отличны от нуля и. Векторы (направления)называются взаимно сопряженными (относительно матрицы А), если все они отличны от нуля и. (2.3)

Лемма 3.1. Пусть векторы являются взаимно сопряженными. Тогда они линейно независимы.

Доказательство. Пусть это неверно, т. е. при некотором. Тогда, что возможно только при, так как матрица А положительно определена. Полученное противоречие доказывает лемму.

Рассмотрим задачу минимизации на R n функции 2.1. Будем решать ее методом 2.2. Если векторы , взаимно сопряжены, то метод 3.2 можно назвать методом сопряженных направлений. Однако обычно это название употребляется лишь для тех методов, в которых именно стремление добится условия взаимной сопряженности определяет выбор направлений. К выполнению того же самого условия может привести и реализация совершенно новой идеи.

Теорема 3.1. Если векторы h k в методе 2.2 взаимно сопряжены, k =0,1,…, m -1 , то для функции f , заданой формулой 2.1,

, (2.4)

где – линейное подпространство, натянутое на указанные векторы.

Доказательство. С учетом 2.2 и определения 2.1 имеем

(2.5)

Используя это равенство, получаем

(2.6)

Следствие. Если векторы h k в методе 2.2 взаимно сопряженны, k =0,1,…, n -1 , то для функции f , заданной формулой 2.1, и произвольной точки

Таким образом, метод 2.2 позволяет найти точку минимума квадратичной функции 2.1 не более чем за n шагов.

2.2. Метод сопряженных направлений нулевого порядка.

Алгоритм состоит из последовательности циклов, k -й из которых определяется начальной точкой t 0 (k ) и направлениями минимизации p 0 (k ), p 1 (k ), …, p n -1 (k ) . На нулевом цикле в качестве t 0 (0), выбирается произвольная точка , в качествеp 0 (0), p 1 (k ), …, p n -1 (k ) – направления координатных осей.

Очередной k -й цикл состоит в последовательном решении одномерных задач

Тем самым определяется шаг из точки в точку

где итаковы, что

После завершения k -го цикланачальная точка и направления минимизации (k +1) -го цикла определяются по формулам

Критерием остановки может служить выполнение неравенства , где– заранее выбраное малое положительное число.

Теорема 3.2. Если векторы в методе 2.5-2.7 отличны от нуля, то для функцииf , заданой формулой 2.1

Доказательство. Учитывая следствие из теоремы 3.1, достаточно показать, что векторы взаимно сопряжены. Пусть. Предположив, что векторывзаимно сопряжены, докажем, что векторсопряжен с векторами.

Заметим, что и, стало быть, точкаt n (k ) , согласно формулам 2.5, получена из точки t n - k (k ) с помощью последовательности одномерных минимизаций вдоль направлений . Это, в силу теоремы 2.1, означает, что

Аналогично, точка t 0 (k ) получена из точки t n - k +1 (k ) помощью последовательности одномерных минимизаций вдоль тех же направлений, и поэтому

Доказываемое утверждение теперь непосредственно следует с леммы 2.2 так как .

Предположение теоремы 2.2 о том, что отличны от нуля, выполняется далеко не всегда. Система векторовможет при некоторомk оказатся линейно зависимой (или «почти» линейно зависимой), в результате чего метод может не обеспечить отыскание минимума даже квадратичной функции.

Опишем модификацию метода 2.5-2.7, приводящую к эффективному алгоритму минимизации.

После завершения k -го цикла проверяется выполнение неравенств . Если хотя бы одно с них выполнено, то производится остановка. В противном случае проверяется выполнение неравенства

, (2.16)

Если оно выполнено, то направления минимизации (k +1) -го цикла остаются прежними, т. е.

Если нет, то направления минимизации (k +1) -го цикла определяется по формулам

В обоих случаях начальная точка (k +1) -го цикла вычисляется так, же как и в исходном алгоритме.

В заключение изучения приближенных методов поиска экстремума ФМП без ограничений рассмотрим метод сопряженных направлений, который завоевывает на практике все большую популярность.

Сначала дадим понятие сопряженности. Пусть имеем два направления, которые характеризуются векторами и. Направленияиназывают сопряженными по отношению к некоторой положительно определенной матрице Н, если выполняется соотношение

, (7)

Сопряженность связана с ортогональностью. Если Н – единичная матрица, то при
имеем два взаимно перпендикулярных вектора. Соотношение (7) можно трактовать таким образом: матрица Н, примененная к вектору, изменяет его длину и поворачивает на некоторый угол так, что новый вектор
должен быть ортогонален вектору.

С помощью метода сопряженных направлений отыщем экстремум сепарабельной функции с начальной точкой
.

1) Производится выбор и в этом направлении отыскивается экстремум.

Возьмем вектор с направлениямии. Векторможно выбирать произвольно, поэтому возьмем==1. Вектордает направлениеL 1 .

Проведем через L 1 плоскость перпендикулярную плоскости {x 1 ,x 2 }. Плоскость пересечет экстремальную поверхность у(х 1 , х 2) и выделит на ней экстремальную линию. Определим координаты минимума на этой линии (параболе), для чего вычислим проекции градиента в точке х 0:

,

и по формуле (6) найдем :

Естественно, линия L 1 касается в точке х (1) линии равного уровня функции у.

2) Отыскивается из условия сопряженности
.

Получим сопряженный вектор с проекциями
и
, воспользовавшись формулой (7):

П
олучили одно уравнение с двумя неизвестными. Т.к. нам требуется только направление вектора, а не его длина, то одним из неизвестных можно задаться произвольно. Пусть
=1, тогда
= –4.

3) Из точки х (1) в направлении ищется экстремум.

Сопряженный вектор должен проходить через х (1) . Сделаем шаг в сопряженном направлении:

Величина шага  (1) в х (1) :

,

Итак, за две итерации было найдено точное значение экстремума функции у. В качестве первого вектора можно было выбрать градиент в исходной точке, процедура поиска остается при этом прежней.

В математике доказывается, что метод сопряженных направлений сходится для квадратичных функций не более чем за n итераций, где n – число переменных. Данное обстоятельство особенно ценно для практики, поэтому данный метод находит все большее применение.

Для функций более общего вида метод сопряженных направлений пока еще только разрабатывается. Основное затруднение тут состоит в том, что матрица Гессе получается функциональной, т.е. содержит переменную.

Классическая задача Лагранжа на условный экстремум (ограничения-равенства).

П
усть задана целевая функция
и ограничение-равенство (уравнение связи)
. Требуется найти минимум
на множестве
. Считаем, что функции
и
имеют непрерывные первые производные и являются выпуклыми или вогнутыми.

Рассмотрим геометрическую интерпретацию классической задачи. На плоскости {x 1 ,x 2 } построим функцию
, а также линии равного уровня функции
со значениямиN 1 , линияN 3 имеет 2 общих точки с
и они не могут быть решением задачи, т.к.N 3 >N 2 . Остается линия уровняN 2 , которая имеет единственную точку касания с
. Абсолютный минимумN 0 может не принадлежать ограничению
и поэтому не может быть решением задачи. Отсюда ясно и название «условный экстремум», т.е. такой экстремум, который достигается только на заданных ограничениях.

В точке касания
с функцией
проведем касательную линиюL. Поострим градиенты функций
и
в точке касания, они будут лежать на одной линии, т.к. оба перпендикулярныLи направлены в разные стороны. Определим проекции градиентов на оси х 1 и х 2 в точке касания:

Из подобия треугольников можно записать:

–множитель Лагранжа.

или

Составим теперь функцию
следующим образом:

–функция Лагранжа.

Запишем соотношения для нахождения экстремума функции F.

Как видно, получили те же соотношения, что были получены исходя из геометрической интерпретации задачи. Постоянная называется множителем Лагранжа. С помощью этого множителя задача на условный экстремум сводится к задаче на безусловный экстремум.

В общем случае, число переменных примем за n, а число ограничений заm. Тогда функция Лагранжа запишется в виде:

или в векторной форме

Для решения задачи записывается система уравнений:

, (8)

т.е. для n+mпеременных будем иметьn+mуравнений. Если система совместна, то задача Лагранжа имеет единственное решение.

Т.к. для определения экстремума использовались только первые производные, то полученные условия будут являться только необходимыми. Если функции
и
выпуклые или вогнутые, то условный экстремум единственный. Если одна из функций невыпуклая, то экстремум может быть и не единственным. Кроме того, открыт вопрос о том, что найдено – минимум или максимум, хотя в инженерной практике обычно из физических соображений это бывает ясно.

Пример: Покажем технику решения задачи методом Лагранжа.

Д
ля рассмотренного выше примера с двумя насосами, задан объем перекачиваемой жидкости:

При этом ограничении требуется найти потребляемую мощность насосов
. Пусть коэффициенты равны 1 = 2 =1, К 1 =1, К 2 =1,5. Тогда целевая функция, найти минимум при ограничении:.

Процедура решения:

    Составляем функцию Лагранжа

    Составляется система уравнений (8):


    Записываются Q i черези подставляются в третье выражение:

,
,
,

Тогда координаты экстремума:

,

Пример 2:

Пусть дано последовательное соединение компрессоров.
Задана требуемая степень сжатия:, которую требуется обеспечить при минимуме расхода мощности:

2.

3.
,
, подставляем в выражение для:

,
,
. Из физических соображений положительный корень отбрасываем, поэтому= –0,98.

Тогда координаты экстремума:

,

Как видно из приведенных примеров при решении задачи Лагранжа получаем в общем случае систему нелинейных уравнений, которую подчас трудно решить аналитически. Поэтому целесообразно применять приближенные методы решения задачи Лагранжа.

Методы наискорейшего спуска и спуска по координатам даже для квадратичной функции требуют бесконечного числа итераций. Однако можно построить такие направления спуска, что для квадратичной функции

  • (3.12)
  • (где r есть n-мерный вектор) с симметричной положительно определенной матрицей А процесс спуска сойдется точно к минимуму за конечное число шагов.

Положительно определенная матрица позволяет ввести норму вектора следующим образом:

Определение (3.13) означает, что под скалярным произведением двух векторов x и у теперь подразумевается величина (х, Ау). Векторы, ортогональные в смысле этого скалярного произведения

(х, Ау) = 0 (3.14)

называют сопряженными (по отношению к данной матрице А).

На этом основана большая группа методов: сопряженных градиентов, сопряженных направлений, параллельных касательных и другие.

Для квадратичной функции они применяются с одинаковым успехом. На произвольные функции наиболее хорошо обобщается метод сопряженных направлений, у которого детали алгоритма тщательно отобраны.

Сначала рассмотрим, как применяется этот метод к квадратичной форме (3.12). Для этого нам потребуются некоторые свойства сопряженных векторов.

Пусть имеется некоторая система попарно сопряженных векторов х i . Нормируем каждый из этих векторов в смысле нормы (3.14), тогда соотношения между ними примут вид

Докажем, что взаимно сопряженные векторы линейно-независимы. Из равенства

что противоречит положительной определенности матрицы. Это противоречие доказывает наше утверждение. Значит, система n-сопряженных векторов является базисом в n-мерном пространстве. Для данной матрицы имеется бесчисленное множество базисов, состоящих из взаимно сопряженных векторов.

Пусть нашли некоторый спряженный базис х i , 1 in. Выберем произвольную точку r 0 . Любое движение из этой точки можно разложить по сопряженному базису

Подставляя это выражение в правую часть формулы (3.12), преобразуем ее с учетом сопряженности базиса (3.15) к следующему виду:

Последняя сумма состоит из членов, каждый из которых соответствует только одной компоненте суммы (3.16). Это означает, что движение по одному из сопряженных направлений х i меняет только один член суммы (3.17), не затрагивая остальных.

Совершим из точки r 0 поочередные спуски до минимума по каждому из сопряженных направлений x i . Каждый спуск минимизирует свой член суммы (3.17), так что минимум квадратичной функции точно достигается после выполнения одного цикла спусков, то есть за конечное число действий.

Сопряженный базис можно построить способом параллельных касательных плоскостей.

Пусть некоторая прямая параллельна вектору х, а квадратичная функция достигает на этой прямой минимального значения в точке r 0 . Подставим уравнение этой прямой r = r 0 + бx в выражение (3.12) и потребуем выполнения условия минимума функции

ц(б) = Ф(r 0) + б 2 + б (x, 2Аr 0 + b),

и положим (dц/dб) б-0 = 0. Отсюда следует уравнение, которому удовлетворяет точка минимума:

(х, 2Аr 0 + b) = 0. (3.18)

Пусть на какой-нибудь другой прямой, параллельно первой, функция принимает минимальное значение в точке r 1 ;тогда аналогично найдем (х, 2Аr 1 + b) = 0. Вычитая это равенство из (3.18), получим

(х, А(r 1 r 0)) = 0. (3.19)

Следовательно, направление, соединяющее точки минимума на двух параллельных прямых, сопряжено направлению этих прямых.

Таким образом, всегда можно построить вектор, сопряженный произвольному заданному вектору х. Для этого достаточно провести две прямые, параллельные х, и найти на каждой прямой минимум квадратичной формы (3.12). Вектор r 1 r 0 , соединяющий эти минимумы, сопряжен х. Заметим, что прямая касается линии уровня в той точке, где функция на данной прямой принимает минимальное значение; с этим связано название способа.

Пусть имеются две параллельные m-мерные плоскости, порожденные системой сопряженных векторов х i , 1 imn. Пусть квадратичная функция достигает своего минимального значения на этих плоскостях соответственно в точках r 0 и r 1 . Аналогичными рассуждениями можно доказать, что вектор r 1 r 0 , соединяющий точки минимума, сопряжен всем векторам х i . Следовательно, если задана неполная система сопряженных векторов х i , то этим способом всегда можно построить вектор r 1 r 0 , сопряженный всем векторам этой системы.

Рассмотрим один цикл процесса построения сопряженного базиса. Пусть уже построен базис, в котором последние m векторов взаимно сопряжены, а первые n-m векторов не сопряжены последним. Найдем минимум квадратичной функции (3.12) в какой-нибудь m-мерной плоскости, порожденной последними mвекторами базиса. Поскольку эти векторы взаимно сопряжены, то для этого достаточно произвольно выбрать точку r 0 и сделать из нее спуск поочередно по каждому из этих направлений (до минимума). Точку минимума в этой плоскости обозначим через r 1 .

Теперь из точки r 1 сделаем поочередный спуск по первым n - m векторам базиса. Этот спуск выведет траекторию из первой плоскости и приведет ее в некоторую точку r 2 . Из точки r 2 снова совершим по последним m направлениям спуск, который приведет в точку r 3 . Этот спуск означает точное нахождение минимума во второй плоскости, параллельной первой плоскости. Следовательно, направление r 3 - r 1 сопряжено последним m векторам базиса.

Если одно из несопряженных направлений в базисе заменить направлением r 3 - r 1 , то в новом базисе уже m + 1 направление будет взаимно сопряжено.

Начнем расчет циклов с произвольного базиса; для него можно считать, что m=1. Описанный процесс за один цикл увеличивает на единицу число сопряженных векторов в базисе. Значит, за n - 1 цикл все векторы базиса станут сопряженными, и следующий цикл приведет траекторию в точку минимума квадратичной функции (3.12).

Хотя понятие сопряженного базиса определено только для квадратичной функции, описанный выше процесс построен так, что его можно формально применять для произвольной функции. Разумеется, что при этом находить минимум вдоль направления надо методом парабол, не используя нигде формул, связанных с конкретным видом квадратичной функции (3.12).

В малой окрестности минимума приращение достаточно гладкой функции обычно представило в виде симметричной положительно определенной квадратичной формы типа (3.2). Если бы это представление было точным, то метод сопряженных направлений сходился бы за конечное число шагов. Но представление приближенно, поэтому число шагов будет бесконечным; зато сходимость этого метода вблизи минимума будет квадратичной.

Благодаря квадратичной сходимости метод сопряженных направлений позволяет находить минимум с высокой точностью. Методы с линейной сходимостью обычно определяют экстремальные значения координат менее точно.

Метод сопряженных направлений является, по-видимому, наиболее эффективным методом спуска. Он неплохо работает и при вырожденном минимуме, и при разрешимых оврагах, и при наличии слабо наклонных участков рельефа - «плато», и при большом числе переменных - до двух десятков.

Шаг 1. Задать начальную точку х (0) и систему N линейно независимых направлений; возможен случай, когда s (i) = e (i) i = 1, 2, 3,..., N.

Шаг 2. Минимизировать f(x) при последовательном движении по (N +1) направлениям; при этом полученная ранее точка минимума берется в качестве исходной, а направление s (N) используется как при первом, так и последнем поиске.

Шаг 3. Определить новое сопряженное направление с помощью обобщенного свойства параллельного подпространства.

Ш а г 4. Заменить s (l) на s (2) и т. д. Заменить s (N) сопряженным направлением. Перейти к шагу 2.

Для того чтобы применить изложенный метод на практике, его необходимо дополнить процедурами проверки сходимости и линей­ной независимости системы направлений. Проверка линейной неза­висимости особенно важна в тех случаях, когда функция f(x) не является квадратичной .

Из способа построения алгоритма следует, что в случае, когда целевая функция квадратична и обладает минимумом, точка минимума находится в результате реализации N циклов, включающих шаги 2, 3 и 4, где N - количество переменных. Если же функция не является квадратичной, то требуется более чем N циклов. Вместе с тем можно дать строгое доказательство того, что при некотором предположении метод Пауэлла сходится к точке локального мини­мума с суперлинейной скоростью (см. данное ниже определение).

Скорость сходимости. Рассматриваемый метод позволяет построить последовательность точек х (k) , которая сходится к решению x*. Метод называется сходящимся, если неравенство

≤ 1, где (3.39)

= x – х* , (3.40)

выполняется на каждой итерации. Поскольку при расчетах обычно оперируют конечными десятичными дробями, даже самый эффективный алгоритм требует проведения бесконечной последовательности итераций. Поэтому в первую очередь интерес представляют асимпто­тические свойства сходимости изучаемых методов. Будем говорить, что алгоритм обладает сходимостью порядка r (см. ), если

, (3.41)

где С - постоянная величина. Из формулы (3.39) следует, что при r = 1имеет место неравенство С ≤ 1. Если r = 1или r = 2, то алгоритм характеризуется линейной или квадратичной скоростью сходимости соответственно. При r = 1и С = 0 алгоритм характеризуется суперлинейной скоростью сходимости.

Пример 3.6. Метод сопряженных направлений Пауэлла

Найти точку минимума функции

f(x) = 2x + 4x x – 10x x + x ,

если задана начальная точка х (0) = T , в которой f (x (0)) = 314.

Шаг 1. s (1) = T , s (2) = T .

Шаг 2. (а) Найдем такое значение λ, при котором

f (x (0) + λs (2)) → min.

Получим: λ* - 0,81, откуда

x (l) = T - 0,81 T = T , f (x (l)) = 250.

(б) Найдем такое значение λ, при котором f (x (1) + λs (1)) → min.

λ* = – 3,26, x (2) = T , f (x (2)) = 1.10.

(в) Найдем такое значение λ, при котором f (x (2) + λs (2)) → min.

λ* = – 0.098, x (3) = T , f (x (3)) = 0.72.

Шаг 3. Положим s (3) = х (3) - x (1) = [-3.26,-0.098] T . После нормировки получим

s (3) = = [0,99955, 0,03] T .

Положим s (1) = s (2) , s (2) = s (3) и перейдем к шагу 2 алгоритма.

Шаг 4. Найдем такое значение λ, при котором f (x (3) + λs (2)) → min.

λ* = – 0.734, x (4) = T , f (x (4)) = 2,86.

Примечание. Если бы f(x) была квадратичной функцией, то полученная точка являлась бы решением задачи (если пренебречь ошибкой округления). В данном случае итерации следует продолжить до получения решения.

Направления поиска, полученные в процессе реализации метода, показаны на рис. 3.13.

Результаты вычислительных экспериментов позволяют утверж­дать, что метод Пауэлла (дополненный процедурой проверки линейной зависимости направлений) отличается по меньшей мере столь же высокой надежностью, как и другие методы прямого поиска, и в ряде случаев является значительно более эффективным. Поэтому проблема выбора алгоритма прямого поиска часто (и обоснованно) разрешается в пользу метода Пауэлла.

Здесь заканчивается рассмотрение методов прямого поиска решений в задачах безусловной оптимизации. В следующем разделе описываются методы, основанные на использовании производных.

Градиентные методы

В предыдущем разделе рассматривались методы, позволяющие получить решение задачи на основе использования только значений целевой функции. Важность прямых методов несомненна, поскольку в ряде практических инженерных задач информация о значениях целевой функции является единственной надежной информацией, которой располагает исследователь.

f(x) = 2x + 4x x – 10x x + x

Рис. 3.13. Решение задачи из примера 3.6 по методу сопряженных направлений Пауэлла.

С другой стороны, при использовании даже самых эффективных прямых методов для получения решения иногда требуется чрезвычайно большое количество вычислений значений функции. Это обстоятельство наряду с совершенно естественным стремлением реализовать возможности нахождения стационарных точек [т. е. точек, удовлетворяющих необходимому условию первого порядка (3.15а)] приводит к необходимости рассмотрения методов, основанных на использовании градиента целевой функции. Указанные методы носят итеративный характер так как компоненты градиента оказываются нелинейными функция­ми управляемых переменных.

Далее везде предполагается, что f(х), f(x) и f(x) существуют и непрерывны. Методы с использованием как первых, так и вторых производных рассматриваются лишь кратко и главным образом в их связи с более полезными методами. Особое внимание уделяется подробному изложению методов сопряженных градиентов, в основе которых лежит введенное выше понятие сопряженности направлений, и так называемых квазиньютоновских методов, которые анало­гичны методу Ньютона, но используют лишь информацию о первых производных. Предполагается, что компоненты градиента могут быть записаны в аналитическом виде или с достаточно высокой точ­ностью вычислены при помощи численных методов. Кроме того, рассматриваются способы численной аппроксимации градиентов." Все описываемые методы основаны на итерационной процедуре реализуемой в соответствии с формулой

x = x + α s (x ) (3.42)

где x - текущее приближение к решению х*; α - параметр характеризующий длину шага; s (x ) = s - направление поиска в N-мерном пространстве управляемых переменных x i , i = 1, 2, 3,..., N .Способ определения s(x) и α на каждой итерации связан с особенностями применяемого метода. Обычно выбор α осуществляется путем решения задачи минимизации f(x) в направлении s (x ). Поэтому при реализации изучаемых методов необходимо использовать эффективные алгоритмы одномерной минимизации.

3.3.1. Метод Коши

Предположим, что в некоторой точке пространства управляемых переменных требуется определить направление наискорейшего локального спуска, т. е. наибольшего локального уменьшения целевой функции. Как и ранее, разложим целевую функцию в окрестности точки в ряд Тейлора

f(x) = f ()+ f() ∆x+ … (3.43)

и отбросим члены второго порядка и выше. Нетрудно видеть, что локальное уменьшение целевой функции определяется вторым слагаемым, так как значение f () фиксировано. Наибольшее уменьшение f ассоциируется с выбором такого направления в (3.42), которому соответствует наибольшая отрицательная величина скалярного произведения, фигурирующего в качестве второго слагаемого разложения. Из свойства скалярного произведения следует, что указанный выбор обеспечивается при

s () = – f(), (3.44)

и второе слагаемое примет вид

–α f () f ().

Рассмотренный случай соответствует наискорейшему локальному спуску. Поэтому в основе простейшего градиентного метода лежит формула

x = x – α f (x ), (3.45)

где α - заданный положительный параметр. Метод обладает двумя недостатками: во-первых, возникает необходимость выбора подходящего значения α, и, во-вторых, методу свойственна медленная сходимость к точке минимума вследствие малости f в окрестности этой точки.

Таким образом, целесообразно определять значение α на каждой итерации

x = x – α f (x ), (3.46)

Значение α вычисляется путем решения задачи минимизации f (x (k +1)) вдоль направления f (x ) с помощью того или иного метода одномерного поиска. Рассматриваемый градиентный метод носит название метода наискорейшего спуска, или метода Коши, поскольку Коши первым использовал аналогичный алгоритм для решения систем линейных уравнений.

Поиск вдоль прямой в соответствии с формулой (3.46) обеспечивает более высокую надежность метода Коши по сравнению с про­стейшим градиентным методом, однако скорость его сходимости при решении ряда практических задач остается недопустимо низкой. Это вполне объяснимо, поскольку изменения переменных непосредственно зависят от величины градиента, которая стремится к нулю в окрестности точки минимума, и отсутствует механизм ускорения движения к точке минимума на последних итерациях. Одно из глав­ных преимуществ метода Коши связано с его устойчивостью. Метод обладает важным свойством, которое заключается в том, что при достаточно малой длине шага итерации обеспечивают выполнение неравенства

f (x ) ≤ f (x ). (3.47)

С учетом этого свойства заметим, что метод Коши, как правило, по­зволяет существенно уменьшить значение целевой функции при движении из точек, расположенных на значительных расстояниях от точки минимума, и поэтому часто используется при реализации градиентных методов в качестве начальной процедуры. Наконец, на примере метода Коши можно продемонстрировать отдельные приемы, которые используются при реализации различных градиентных алгоритмов.

Пример 3.7. Метод Коши

Рассмотрим функцию

f(x) = 8x + 4x x + 5x

и используем метод Коши для решения задачи ее минимизации.

Решение. Прежде всего вычислим компоненты градиента

= 16x + 4x , = 10x + 4x .

Для того чтобы применить метод наискорейшего спуска, зададим начальное приближение

x (0) = T

и с помощью формулы (3.46) построим новое приближение

x = x f (x )


f (x) = 8x + 4x x + 5x

Рис. 3.14. Итерации по методу Коши с использованием метода квадратичной интерполяции.

Таблица 3.1. Результаты вычислений по методу Коши

k x x f(x )
1 -1.2403 2.1181 24.2300
2 0.1441 0.1447 0.3540
3 -0.0181 0.0309 0.0052
4 0.0021 0.0021 0.0000

Выберем α таким образом, чтобы f (x (1)) → min.; α = 0,056. Следовательно, x (1) = [1,20, 2.16] T Далее найдем точку

x = x – α f (x ),

вычислив градиент в точке x и проведя поиск вдоль прямой.

В таблице 3.1 представлены данные, полученные при проведении итераций на основе одномерного поиска по методу квадратичной интерполяции . Последовательность полученных точек изображена на рис. 3.14.

Несмотря на то что метод Коши не имеет большого практического значения, он реализует важнейшие шаги большинства градиентных методов. Блок-схема алгоритма Коши приведена на рис. 3.15. Заметим, что работа алгоритма завершается, когда модуль градиента или модуль вектора ∆x становится достаточно малым.


Рис. 3.15. Блок-схема метода Коши.

3.3.2. Метод Ньютона

Нетрудно видеть, что в методе Коши применяется «наилучшая» локальная стратегия поиска с использованием градиента. Однако* движение в направлении, противоположном градиенту, приводит в точку минимума лишь в том случае, когда линии уровня функции f представляют собой окружности. Таким образом, направление, противоположное градиенту, вообще говоря, не может служить приемлемым глобальным направлением поиска точек оптимума нелинейных функций. Метод Коши основывается на последовательной линейной аппроксимации целевой функции и требует вычисления значений функции и ее первых производных на каждой итерации. Для того чтобы построить более общую стратегию поиска, следует привлечь информацию о вторых производных целевой функции.

Опять разложим целевую функцию в ряд Тейлора

f(x)=f(x )+ f(x ) ∆x+½∆x f(x )∆x+O(∆x³).

Отбрасывая все члены разложения третьего порядка и выше, полу­чим квадратичную аппроксимацию f(x):

(x; x ) = f(x ) + f(x ) T ∆x + ½∆x f(x )∆x, (3.48)

где (x; x ) - аппроксимирующая функция переменной х, построенная в точке x . На основе квадратичной аппроксимации функции f(х) сформируем последовательность итераций таким образом, чтобы во вновь получаемой точке x градиент аппроксимирующей функции обращался в нуль. Имеем

(x; x ) = + f(x )+ f(x ) = 0, (3.49)

2024 psy-logo.ru. Образование это просто.