Плазма крови: функции, питательные вещества, белки, электролиты и антитела. Для чего нужна плазма Из чего состоит плазма и ее функции

Плазма содержится не только в крови, но и в тканях организма. В веществе содержится несколько сотен жизненно важных элементов. Например, в нем можно обнаружить билирубин, соль, витамины C, D, инсулин, мочевину, и мочевую кислоту. Плазма разжижает кровь и придает ей оптимальную консистенцию для транспортировки жизненно важных веществ ко всем клеткам человеческого тела. Также она содержит , который играет самую важную роль в процессе свертывания крови.

93% всей массы плазмы составляет вода, а остальное – белки, липиды, минеральные вещества и углеводы. При извлечении из крови фибриногена можно получить сыворотку крови, в которой содержатся необходимые антитела, широко используемые для исцеления больных серьезными заболеваниями.

Плазма вместе с большим содержанием тромбоцитов широко применяется в медицине для заживления тканей в организме.

Плазма крови забирается в качестве важного элемента . Во время забора она собирается в стерильный пакет, после чего при помощи запуска на центрифуге разделяется на эритроциты, которые возвращаются донору.

Функции плазмы

Белок плазмы выполняет несколько важных функций. Наиболее важными из них является питательная – клетки крови захватывают белки и расщепляют их при помощи специальных ферментов, что способствует их усвоению.

Белки глобулины, содержащиеся в крови, обеспечивают защитную, транспортную и патологическую функции организма.

Транспортная функция плазмы заключается в переносе молекул питательных веществ к месту организма, где те или иные клетки потребляются. Она обеспечивает и коллоидно-осмотическое давление, которое регулирует баланс воды между клетками. Осмотическое давление реализуется благодаря переносимым в плазме минералам. Буфферная функция реализуется для поддержания нужного кислотного баланса в организме, а белки препятствуют появлению кровотечений.

В плазме также содержатся цитоктины – вещества, которые отвечают за появление воспалений и ответов иммунной реакции организма на раздражители. Количество цитоктинов используется при диагностике сепсиса или реакциях отторжения донорских органов. Превышенная концентрация мочевой кислоты в крови может говорить о наличии подагры или снижении функции почек, которое наблюдается при гепатите и приеме некоторых лекарственных препаратов.

Плазма крови – первая (жидкая) составляющая ценнейшей биологической среды под названием кровь. Плазма крови забирает на себя до 60% всего объема крови. Вторую часть (40 – 45 %) циркулирующей по кровеносному руслу жидкости берут на себя форменные элементы: эритроциты, лейкоциты, тромбоциты.

Состав плазмы крови – уникальный. Чего там только нет? Различные белки, витамины, гормоны, ферменты – в общем, все, что каждую секунду обеспечивает жизнь человеческого организма.

Состав плазмы крови

Желтоватая прозрачная жидкость, выделенная при образовании свертка в пробирке – и есть плазма? Нет – это сыворотка крови , в которой нет коагулируемого белка (фактора I), он ушел в сгусток. Однако, если взять кровь в пробирку с антикоагулянтом, то он не позволит ей (крови) свернуться, а тяжелые форменные элементы через некоторое время опустятся на дно, сверху же останется также желтоватая, но несколько мутноватая, в отличие от сыворотки, жидкость, вот она и есть плазма крови , мутность которой придают содержащиеся в ней белки, в частности, фибриноген (FI).

Состав плазмы крови поражает своим многообразием. В ней, кроме воды, которая составляет 90 – 93 %, присутствуют компоненты белковой и небелковой природы (до 10%):

плазма в общем составе крови

  • , которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны (до 50% от всех белков или 40 – 50 г/л), (≈ 2,7%) и фибриноген;
  • Другие вещества белковой природы (компоненты комплемента, углеводно-белковые комплексы и пр.);
  • Биологически активные вещества (ферменты, гемопоэтические факторы – гемоцитокины, гормоны, витамины);
  • Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;
  • Углеводы, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
  • Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками ( , и др.);
  • В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы ( , калий, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.

Таким образом, плазма – это очень сложная коллоидная система, в которой «плавает» все, что содержится в организме человека и млекопитающих и все, что готовится к удалению из него.

Вода – источник Н 2 О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).

Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.

Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях. В подобных случаях готовится и переливается доступное и дешевое лекарственное средство – изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).

Видео: что такое плазма крови


Функции плазмы крови обеспечивают белки

Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы, однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:

  1. Транспортная (альбумин, глобулины);
  2. Дезинтоксикационная (альбумин);
  3. Защитная (глобулины – иммуноглобулины);
  4. Коагуляционная (фибриноген, глобулины: альфа-1-глобулин – протромбин);
  5. Регуляторная и координационная (альбумин, глобулины);

Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).

белки плазмы крови

Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.

Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.

Таблица 1. Основные белки плазмы крови

Основные белки плазмы Содержание в плазме (норма), г/л Главные представители и их функциональное назначение
Альбумины 35 - 55 «Строительный материал», катализатор иммунологических реакций, функции: транспорт, обезвреживание, регуляция, защита.
Альфа Глобулин α-1 1,4 – 3,0 α1-антитрипсин, α-кислый протеин, протромбин, транскортин, переносящий кортизол, тироксинсвязывающий белок, α1-липопротеин, транспортирующий жиры к органам.
Альфа Глобулин α-2 5,6 – 9,1 α-2-макроглобулин (главный в группе протеин) - участник иммунного ответа, гаптоглобин - образует комплекс со свободным гемоглобином, церулоплазмин – переносит медь, аполипопротеин В – транспортирует липопротеиды низкой плотности («плохой» холестерин»).
Бета Глобулины: β1+β2 5,4 – 9,1 Гемопексин (связывает гем гемоглобина, чем предотвращает удаление железа из организма), β-трансферрин (переносит Fe), компонент комплемента (участвует в иммунологических процессах), β-липопротеиды – «транспортное средство» для холестеринов и фосфолипидов.
Гамма глобулин γ 8,1 – 17,0 Естественные и приобретенные антитела (иммуноглобулины 5 классов – IgG, IgA, IgM, IgE, IgD), осуществляющие, главным образом, иммунную защиту на уровне гуморального иммунитета и создающие аллергостатус организма.
Фибриноген 2,0 – 4,0 Первый фактор свертывающей системы крови – FI.

Альбумины

Альбумины – это простые белки, которые по сравнению с другими протеинами:

структура альбумина

  • Проявляют самую высокую устойчивость в растворах, но при этом хорошо растворяются в воде;
  • Неплохо переносят минусовые температуры, не особо повреждаясь при повторном замораживании;
  • Не разрушаются при высушивании;
  • Пребывая в течение 10 часов при довольно высокой для других белков температуре (60ᵒС), не теряют своих свойств.

Способности этих важных белков обусловлены наличием в молекуле альбумина очень большого количества полярных распадающихся боковых цепей, что определяет главные функциональные обязанности белков – участие в обмене и осуществление антитоксического эффекта. Функции альбуминов в плазме крови можно представить следующим образом:

  1. Участие в водном обмене (за счет альбуминов поддерживается необходимый объем жидкости, поскольку они обеспечивают до 80% суммарного коллоидно-осмотического давления крови);
  2. Участие в транспортировке различных продуктов и, особенно, тех, которые с большим трудом поддаются растворению в воде, например, жиров и желчного пигмента – билирубина (билирубин, связавшись с молекулами альбумина, становится безвредным для организма и в таком состоянии переносится в печень);
  3. Взаимодействие с макро- и микроэлементами, поступающими в плазму (кальций, магний, цинк и др.), а также со многими лекарственными препаратами;
  4. Связывание токсических продуктов в тканях, куда данные белки беспрепятственно проникают;
  5. Перенос углеводов;
  6. Связывание и перенос свободных жирных кислот – ЖК (до 80%), направляющихся в печень и другие органы из жировых депо и, наоборот, при этом, ЖК не проявляют агрессии в отношении красных клеток крови (эритроцитов) и гемолиза не происходит;
  7. Защита от жирового гепатоза клеток печеночной паренхимы и перерождения (жирового) других паренхиматозных органов, а, кроме этого, препятствие на пути образования атеросклеротических бляшек;
  8. Регуляция «поведения» некоторых веществ в организме человека (поскольку активность ферментов, гормонов, антибактериальных препаратов в связанном виде падает, данные белки помогают направить их действие в нужное русло);
  9. Обеспечение оптимального уровня катионов и анионом в плазме, защита от негативного воздействия случайно попавших в организм солей тяжелых металлов (комплексируются с ними с помощью тиоловых групп), нейтрализация вредных веществ;
  10. Катализ иммунологических реакций (антиген→антитело);
  11. Поддержание постоянства рН крови (четвертый компонент буферной системы – плазменные белки);
  12. Помощь в «строительстве» тканевых протеинов (альбумины совместно с другими белками составляют резерв «стройматериалов» для столь важного дела).

Синтезируется альбумин в печени. Средний период полужизни данного белка составляет 2 – 2,5 недели, хотя одни «проживают» неделю, а другие – «работают» до 3 – 3,5 недель. Путем фракционирования белков из плазмы доноров получают ценнейший лечебный препарат (5%, 10% и 20% раствор), имеющий аналогичное название. Альбумин является последней фракцией в процессе, поэтому его производство требует немалых трудовых и материальных затрат, отсюда и стоимость лечебного средства.

Показаниями к использованию донорского альбумина являются различные (в большинстве случаев довольно тяжелые) состояния: большая, создающая угрозу жизни, потеря крови, падение уровня альбумина и снижение коллоидно-осмотического давления по причине различных заболеваний.

Глобулины

Эти белки забирают меньшую долю по сравнению с альбумином, однако довольно ощутимую среди других протеинов. В лабораторных условиях глобулины разделяют на пять фракций: α-1, α-2, β-1, β-2 и γ-глобулины. В условиях производства для получения препаратов из фракции II + III выделяют гамма-глобулины, которые впоследствии будут использованы для лечения различных болезней, сопровождающихся нарушением в системе иммунитета.

разнообразие форм видов белков плазмы

В отличие от альбуминов, вода для растворения глобулинов не подходит, поскольку в ней они не растворяются, зато нейтральные соли и слабые основания вполне подойдут для приготовления раствора данного белка.

Глобулины – весьма значимые плазменные протеины, в большинстве случаев – это белки острой фазы. Не глядя на то, что их содержание находится в пределах 3% от всех плазменных белков, они решают важнейшие для организма человека задачи:

  • Альфа-глобулины участвуют во всех воспалительных реакциях (в биохимическом анализе крови отмечается повышение α-фракции);
  • Альфа- и бета-глобулины, находясь в составе липопротеинов, осуществляют транспортные функции (жиры в свободном состоянии в плазме появляются очень редко, разве что после нездоровой жирной трапезы, а в нормальных условиях холестерин и другие липиды связаны с глобулинами и образуют растворимую в воде форму, которая легко транспортируется из одного органа в другой);
  • α- и β-глобулины участвуют в холестериновом обмене (см. выше), что определяет их роль в развитии атеросклероза, поэтому неудивительно, что при патологии, протекающей с накоплением липидов, в сторону увеличения изменяются значения бета-фракции;
  • Глобулины (фракция альфа-1) переносят витамин В12 и отдельные гормоны;
  • Альфа-2-глобулин находится в составе принимающего очень активное участие в окислительно-восстановительных процессах гаптоглобина – этот острофазный белок связывает свободный гемоглобин и, таким образом, препятствует выведению железа из организма;
  • Часть бета-глобулинов совместно с гамма-глобулинами решает задачи иммунной защиты организма, то есть, является иммуноглобулинами;
  • Представители альфа, бета-1 и бета-2-фракций переносят стероидные гормоны, витамин А (каротин), железо (трансферрин), медь (церулоплазмин).

Очевидно, что внутри своей группы глобулины несколько отличаются друг от друга (прежде всего, своим функциональным назначением).

Следует заметить, что с возрастом или при отдельных заболеваниях печень может начать производить не совсем нормальные глобулины альфа и бета, при этом, измененная пространственная структура макромолекулы белков не лучшим образом отразится на функциональных способностях глобулинов.

Гамма-глобулины

Гамма-глобулины – белки плазмы крови, обладающие наименьшей электрофоретической подвижностью, эти протеины составляют основную массу естественных и приобретенных (иммунных) антител (АТ). Гамма-глобулины, образованные в организме после встречи с чужеродным антигеном, называют иммуноглобулинами (Ig). В настоящее время с приходом в лабораторную службу цитохимических методов стало возможным исследование сыворотки с целью определения в ней иммунных белков и их концентраций. Не все иммуноглобулины, а их известно 5 классов, имеют одинаковую клиническую значимость, кроме того, их содержание в плазме зависит от возраста и меняется при различных ситуациях (воспалительные заболевания, аллергические реакции).

Таблица 2. Классы иммуноглобулинов и их характеристика

Класс иммуноглобулинов (Ig) Содержание в плазме (сыворотке), % Основное функциональное назначение
G Ок. 75 Антитоксины, антитела, направленные против вирусов и грамположительных микробов;
A Ок. 13 Антиинсулярные АТ при сахарном диабете, антитела, направленные против капсульных микроорганизмов;
M Ок. 12 Направление – вирусы, грамотрицательные бактерии, форсмановские и вассермановские антитела.
E 0,0… Реагины, специфические АТ против различных (определенных) аллергенов.
D У эмбриона, у детей и взрослых, возможно, обнаружение следов Не учитываются, поскольку клинической значимости не имеют.

Концентрация иммуноглобулинов разных групп имеет заметные колебания у детей младшей и средней возрастной категории (преимущественно за счет иммуноглобулинов класса G, где отмечаются довольно высокие показатели – до 16 г/л). Однако приблизительно после 10-летнего возраста, когда прививки сделаны и основные детские инфекции перенесены, содержание Ig (в том числе, IgG) снижается и устанавливается на уровне взрослых:

IgM – 0,55 – 3,5 г/л;

IgA – 0,7 – 3,15 г/л;

IgG – 0,7 – 3,5 г/л;

Фибриноген

Первый фактор свертывания (FI – фибриноген), который при образовании сгустка переходит в фибрин, формирующий сверток (наличие в плазме фибриногена отличает ее от сыворотки), по сути, относится к глобулинам.

Фибриноген с легкостью осаждается 5% этанолом, что используется при фракционировании белков, а также полунасыщенным раствором хлорида натрия, обработкой плазмы эфиром и повторным замораживанием. Фибриноген термолабилен и полностью сворачивается при температуре 56 градусов.

Без фибриногена не образуется фибрин, без него не останавливается кровотечение. Переход данного белка и образование фибрина осуществляется с участием тромбина (фибриноген → промежуточный продукт – фибриноген В → агрегация тромбоцитов → фибрин). Начальные стадии полимеризации фактора свертывания можно повернуть вспять, однако под влиянием фибринстабилизирующего фермента (фибриназа) происходит стабилизация и течение обратной реакции исключается.

Участие в реакции свертывания крови – главное функциональное назначение фибриногена, но он имеет и другие полезные свойства, например, по ходу выполнения своих обязанностей, укрепляет сосудистую стенку, производит небольшой «ремонт», прилипая к эндотелию и закрывая тем самым маленькие дефекты, которые то и дело возникают в процессе жизни человека.

Белки плазмы в качестве лабораторных показателей

В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.

Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.

Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).

Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном .

Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).

Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe 3+ , как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.

Исследование сыворотки с целью определения содержания (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).

Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, ).

Плазма крови – лечебное средство

Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).

В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.

Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.

Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.

Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении – здоровым, а его плазма должна иметь определенный титр антител (не менее 1: 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.

Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.

Видео: о сборе и использовании плазмы крови


Фракционирование белков плазмы в промышленных масштабах

Между тем, использование цельной плазмы в современных условиях далеко не всегда оправдано. Причем, как с терапевтических, так и с экономических точек зрения. Каждый из плазменных белков несет свои, присущие только ему, физико-химические и биологические свойства. И вливать бездумно столь ценный продукт человеку, которому нужен конкретный белок плазмы, а не вся плазма, нет никакого смысла, к тому же – дорого в материальном плане. То есть, одна и та же доза жидкой части крови, разделенная на составляющие, может принести пользу нескольким пациентам, а не одному больному, нуждающемуся в отдельном препарате.

Промышленный выпуск препаратов был признан в мире после разработок в этом направлении ученых Гарвардского университета (1943 год). В основу фракционирования белков плазмы лег метод Кона, суть которого – осаждение фракций протеинов ступенчатым добавлением этилового спирта (концентрация на первом этапе – 8%, на завершающем – 40%) в условиях низких температур (-3ºС – I стадия, -5ºС – последняя). Безусловно, метод несколько раз модифицировался, однако и теперь (в разных модификациях) его используют для получения препаратов крови на всей планете. Вот его краткая схема:

  • На первой стадии осаждается белок фибриноген (осадок I) – данный продукт после специальной обработки пойдет в лечебную сеть под собственным названием или войдет в набор для остановки кровотечений, называемый «Фибриностатом»);
  • Вторую стадию процесса представляет супернатант II + III (протромбин, бета- и гамма-глобулины ) – эта фракция пойдет на производство препарата, который называется гамма-глобулин человека нормальный , либо будет выпущена, как лечебное средство под названием антистафилококковый гамма-глобулин . В любом случае, из супернатанта, полученного на второй стадии, можно приготовить препарат, содержащий большое количество антимикробных и антивирусных антител;
  • Третья, четвертая стадии процесса нужны для того, чтобы добраться до осадка V (альбумин + примесь глобулинов);
  • 97 – 100% альбумин выходит лишь на завершающей стадии, после чего с альбумином еще долго придется работать, пока он не поступит в лечебные учреждения (5, 10, 20% альбумин).

Но это – всего лишь краткая схема, подобное производство на самом деле занимает много времени и требует участия многочисленного персонала разной степени квалификации. На всех этапах процесса будущее ценнейшее лекарство находится под постоянным контролем различных лабораторий (клинической, бактериологической, аналитической), ведь все параметры препарата крови на выходе должны строго соответствовать всем характеристикам трансфузионных сред.

Таким образом, плазма, помимо того, что в составе крови она обеспечивает нормальную жизнедеятельность организма, может быть еще важным диагностическим критерием, показывающим состояние здоровья, или же спасать жизнь других людей, используя свои уникальные свойства. И это не все о плазме крови. Мы не стали давать полнейшую характеристику всем ее белкам, макро- и микроэлементам, досконально описывать ее функции, ведь все ответы на оставшиеся вопросы можно найти на страницах СосудИнфо.

Плазма крови представлена ее жидкой частью, в которой находятся форменные элементы . Плазмы в крови содержится от 50 до 60% в зависимости от различных факторов. Ее кислотно-щелочной баланс составляет примерно 7.35 рН. Эта жидкость представляет собой немного мутную желтую или прозрачную однородную субстанцию, которая после процесса осаждения форменных элементов собирается в верхней части сосуда. Также плазма является межклеточным веществом крови и жировой ткани.

В состав плазмы крови входит вода (более 90%), белки, которые составляют около 7% от ее массы, минеральные и органические соединения. Альбумины, глобулины и фибриногены являются основными белками, входящими в состав плазмы, также десятки других белков входят в ее состав. Фибриноген – это важнейший белок, участвующий в свертывании крови, который в результате это процесса превращается в фибрин . После плазма крови называется , в ней содержатся , которые называются иммуноглобулины . В плазме крови растворены и различные питательные вещества, , конечные и промежуточные продукты , неорганические ионы.

Собирание донорской плазмы – важный момент, которому посвящена обширная практика. Для ее сбора применяется метода плазмофереза . Суть его заключается в следующем. Кровь донора очищают от эритроцитов , собирают в специальную емкость, после чего возвращаются донору крови.

Плазма крови, которая богата тромбоцитами , сегодня находит широкое применение в медицинской практике в качестве стимуляции и заживления тканей после различных разрушающих факторов. Плазма, богатая тромбоцитами, в настоящее время лежит в основе многофункциональной методики , используется в косметологии и стоматологии. Также из плазмы крови животных и людей готовят лекарственные и косметологические препараты: альбумин, сухая плазма крови, фибриноген и т.д. В последнее время более широко используется применение не цельной сыворотки, а ее фракций, составных частей.

Для научных исследований и диагностики некоторых заболеваний могут применяться специальные сыворотки – меченые люминофорами, радионуклидами или ферментами.

Переливание плазмы может использоваться для быстрого заживления ожогов, при циррозе печени, гнойно-септических болезнях. Переливание плазмы начинается с пробы на совместимость крови больного и донора.

Введение даже не больших объемов плазмы крови (до 50 мл) вместе со свертывающими препаратами дает хорошие результаты при кровотечениях, повышается тонус сосудов. Кроме остановки кровотечений, переливание плазмы крови используется в целях восполнения нехватки каких-либо элементов крови или ее жидкой части.

В том случае, если у больного наблюдается повышенная свертываемость, переливание не делается из-за опасности осложнений вплоть до летального исхода.

Изучение плазмы крови имеет большое значение для диагностики различных патологий и заболеваний, например при сахарном диабете , при отклонении от нормального уровня ингредиентов крови, при появлении патологических белков, к примеру, при образуется С-реактивный белок.

Плазма представляет собой жидкую составную часть крови, богатую биологически активными компонентами: белками, липидами, гормонами, ферментами. Свежезамороженная плазматическая жидкость считается лучшим продуктом в виду того, что в ней сохраняется наибольшее число полезных компонентов. Тогда как жидкая нативная, сухая лиофилизированная и антигемофильная плазма несколько теряет присущие этому компоненту лечебные характеристики, поэтому они менее востребованы.

Плазма и ее структура

Плазма крови: для чего переливают?

Переливание любого вида плазмы крови позволяет восстановить нормальный объем циркулирующей в организме крови, равновесие между гидростатическим и коллоидно-онкотическим давлением.

Положительный эффект от такого-рода процедуры становится возможным по той причине, что молекулярная масса плазматических белков и молекулярная масса крови реципиента различны. В виду этого проницаемость стенок сосудов низкая, и питательные вещества не усваиваются, они на протяжении долгого времени находятся в кровяном русле.

Если у человека острое кровотечение, внутривенное плазменное переливание реализуется в дозе от 0,5 л и до 2 л. В данном случае все зависит от артериального давления больного и сложности протекания его заболевания. В особо тяжелых ситуациях рекомендуется совмещать вливание плазмы и эритроцитной массы.

Плазму вливают струйно или капельно, в зависимости от показаний. Если нарушена микроциркуляция, к плазме добавляют реополиглюкин или другие препараты этой группы.

Термины: Гемотрансфузия – это внутрисосудистое переливание цельной крови реципиенту. По сути, сложнейшая операция, предполагающая трансплантацию живой ткани человеку.

Переливание плазмы крови: показания

Фармакологический справочник РЛС диктует следующие показания к переливанию свежезамороженной плазмы крови:

  • Острый ДВС синдром, который одновременно осложняет протекание шока разного происхождения; синдром массивных трансфузий;
  • Сильное кровотечение, которое предполагает потерю более чем трети общего объема крови. При этом возможно дальнейшее осложнение в виде того же синдрома диссеминированного внутрисосудистого свертывания;

Показания для переливания свежезамороженной плазмы
  • Патологические изменения печени и почек (условные показания);
  • Передозировка антикоагулянтов, к примеру, дикумарина;
  • При процедуре плазмафереза терапевтического характера, вызванного синдромом Мошковица, острыми отравлениями, сепсисом;
  • Тромбоцитопеническая пурпура;
  • Операции на открытом сердце с подключением аппарат искусственного кровообращения;
  • Коагулопатии, возникающие из-за низкой концентрации физиологических антикоагулянтов и прочее.

Мы рассмотрели наиболее распространенные показания для переливания свежезамороженной плазмы. Не рекомендовано выполнять подобную процедуру для восполнения всего объема циркулирующей крови. В данном случае применяются другие методики. Не назначают переливание плазмы больным, страдающим застойной формой СН.

Свежезамороженная кровяная плазма

Свежезамороженная плазма считается одной из базовых составных крови, она создается путем быстрого замораживания после отделения форменных ее элементов. Сохраняют такое вещество в специальных пластиковых контейнерах.

Главные недостатки использования данного биоматериала:

  • риск передачи инфекционного заболевания;
  • риск возникновения аллергических реакций;
  • конфликт биоматериала донора и реципиента (перед переливанием обязательна биологическая проба на совместимость).

Свежезамороженная плазма

Свежезамороженная плазма изготавливается двумя методами:

  • плазмаферезом;
  • центрифугированием.

Плазма замораживается при температуре -20 градусов. Использовать ее разрешается в течение года. Только на это время обеспечивается сохранность лабильных факторов системы гемостаза. После истечения срока годности плазма утилизируется как биологические отходы.

Термины: Гемостаз – это такая система в организме человека, главной задачей которой остановка кровотечений и растворение тромбов при сохранении жидкого состояния крови в сосудах.


Гемостаз

Непосредственно перед самим вливанием плазмы кровь оттаивают при температурных показателях в + 38 градусов. При этом выпадают хлопья фибрина. Это не страшно, поскольку они не помешают нормальному току крови через пластификаторы с фильтрами. Тогда как крупные сгустки и мутность плазмы свидетельствуют о некачественном продукте. И для врачей это противопоказание для ее дальнейшего использования, хотя при сдаче крови и пробе лаборанты могли не выявить дефектов.

Важно! Благодаря тому, что хранить такой продукт допускается на протяжении длительного времени, врачи стараются придерживаться правила “один донор – один реципиент”.

Белки плазмы иммуногенны. Это означает, что при частых и объемных переливаниях у рецепиента может сформироваться сенсибилизация. Это способно привести к анафилактическому шоку при очередной процедуре. Данное обстоятельство приводит к тому, что врачи стараются переливать плазму по строгим показаниям. При лечении коагулопатий предпочтительнее использовать криопрециптат (белковый препарат, содержащий факторы свертывания крови. которых не хватает человеку).


Трансфузия

При использовании биоматериала важно соблюдать строгие правила: нельзя использовать один и тот же контейнер плазмы для переливания нескольким реципиентам. Не допускается повторно замораживать плазму крови!

Переливание плазмы крови: последствия

Практика показывает, что чаще всего осложнений и проблем после переливание плазмы крови не предполагается. Если рассматривать исследования, то это меньше одного процента из ста. Однако побочные эффекты могут стать причиной существенных сбоев в работе всего организма и даже летального исхода. В виду того, что гемотрансфузия плазмозаменителем (плазмой) не дает стопроцентной безопасности, от пациентов изначально берут согласие на такую процедуру, обязательно доводя до их ведома все положительные стороны, эффективность и возможные альтернативы переливания.

  • Системой, позволяющей максимально быстро выявить и лечить побочные эффекты, которые угрожают жизни человека, должна быть снабжена любая клиника, где выполняется переливание плазмы. Современные федеральные инструкции и руководства регламентируют постоянно сообщать о таких случаях, как это происходит с несчастными случаями и врачебными ошибками.

Острые неблагоприятные эффекты

К иммунологическим острым неблагоприятным эффектам относятся следующие:

  • Фебрильная реакция на трансфузию. При этом лихорадка встречается чаще всего. Если такая реакция сопровождает несовместимость крови донора и реципиента (гемолиз), то переливание требуется немедленно прекратить. Если это негемолитическая реакция, то она не опасно для жизни человека. Такая реакция часто сопровождается головной болью, зудом и другими проявлениями аллергии. Лечится назначением ацетаминофена.
  • Уртикарная сыпь дает о себе знать сразу же после переливания плазмы. Это весьма распространенное явление, механизм которого тесно взаимосвязан с высвобождением гистамина. Чаще всего врачи в таком случае выписывают рецепт на применение лекарственного средства “бенадрил”. И как только сыпь исчезнет, можно говорить о том, что реакция закончилась.

Уртикарная сыпь
  • Буквально через два-три часа после переливания плазмы крови может резко проявиться респираторный дистресс-синдром, понижение гемоглобина и гипотония. Это свидетельствует о развитии острого повреждения легких. В данном случае требуется быстрое вмешательство врачей для организации респираторной поддержки с вентиляцией механического характера. Но переживать слишком не надо, исследования показали, что летальный исход от такого эффекта наступает меньше чем у десяти процентов реципиентов. Главное – вовремя сориентироваться лечебному персоналу.
  • Острый гемолиз возникает по причине несоответствия идентификации плазмы крови реципиента, другими словами, в виду ошибки персонала. Вся сложность данного эффекта заключается в том, что клинические показания могут остаться не выраженными, сопровождаясь исключительно анемией (отсроченный гемолиз). Тогда как осложнения наступают в случае сопутствующих отягощающих факторов: почечной недостаточности в острой форме, шока, артериальной гипотонии, плохой свертываемости крови.

Важно! Если человек находится под наркозом или же впал в кому, признакомгемолиза становится внутреннее кровотечение по непонятным причинам из места инъекции.

В данном случае врачи обязательно воспользуются активной гидратацией и назначением вазоактивных лекарственных средств.

  • Анафилаксия чаще всего дает о себе знать в первую минуту проведения переливания крови. Клиническая картина: респираторный дистресс, шок, артериальная гипотония, отечность. Это очень опасное явление, требующее экстренного вмешательства специалистов. Здесь нужно сделать все, чтобы поддержать дыхательную функцию человека, в том числе ввести адреналин, поэтому все препараты обязательно находятся под рукой.

К осложнениям неиммунологического характера относят:

  • Перегрузку объемом (гиперволемию). При неверном расчете объема переливаемой плазмы повышается нагрузка на сердце. Объем внутрисосудистой жидкости излишне увеличивается. Лечится приемом мочегонных средств..

Бактериальное заражение тромбоцитов

Симптоматика гиперволемии: сильная одышка, гипертензия и даже тахикардия. Чаще всего она проявляется по истечению шести часов после проведения переливания плазмы крови.

К химическим эффектам относят: интоксикацию цитратом, гипотермию, гиперкалиемию, коагулопатию и прочее.

Что представляет собой техника переливания плазмы крови?

Показания к переливанию плазмы крови и всех ее физиологических компонентов определяет исключительно лечащий врач на базе ранее проведенных лабораторных, физикальных и инструментальных исследований. Важно понимать, что стандартной и налаженной схемы лечения и диагностики заболеваний в данном случае нет. У каждого человека последствия и само переливание протекает индивидуально, в зависимости от реакции организма на происходящее. В любом случае, это значительная нагрузка на него.

Часто задаваемые вопросы, касающиеся разнообразных методик гемотрансфузии, можно отыскать в методических рекомендациях.

Что собой представляет непрямое и прямое переливание крови?

Непрямое переливание крови применяется чаще всего. Оно реализуется прямо в вену посредством одноразового флакона с фильтром. При этом технология заполнения одноразовой системы обязательно описывается в инструкции завода-изготовителя. В лечебной практике применяются и другие пути введения плазмы: не только в вену, но и внутриартериально, внутриаортально и внутрикостно. Все зависит от того, какого результата требуется достичь, и есть ли вообще возможность обеспечить переливание плазмы.


Непрямое переливание крови

Прямое переливание кровяной массы не предполагает ее стабилизацию и консервацию. В данном случае процедура производится непосредственно от донора реципиенту. При этом возможно исключительно переливание цельной крови. Вводить кровь можно только внутривенно, других вариантов не предполагается.

1. Транспортная функция: доставка на периферию к тканям и клеткам тела кислорода из легких, необх для окисл процессов, питательных веществ из кишечника (глюкозы, аминокислот, жиров, витаминов, солей, а также воды), удаление углекислоты СО2 и других продуктов обмена (шлаков) ч/з экскреторные системы (легкие, кишечник, печень, почки, кожу).

2. Участие в нейрогуморальной регуляции функций организма.

3. Защитная функция целлюлярная (фагоциты крови) и гуморальная (антитела).

4. Участие в физико-химической регуляции организма (темп, осмот давления, кислотно-щелочного равновесия, коллоидно-осмотического давления, химического состава).

Эритроциты : м – 4 -5 х 10¹²/л; ж – 3,7 - 4,7 х 10¹²/л.

ЦПК : 0,8-1,1 – нормохромазия; 0,8 – гипохромазия; 1,1 – гиперхромазия.

Гемоглобин :98% массы белков эритроцита, Hb м – 140-160 г/л, Hb ж – 120-140 г/л.

Тромбоциты 200-400 х109/л. Образуются в костном мозге из мегакариоцитов. Продол 8-12 сут. Разрушаются в печени, легких, селезенке. Образование регулируется- тромбопоэтином

В крови в неактивном состоянии, активируются при контакте с поврежденной поверхностью.

Виды лейкоцитов

Гранулоциты

Агранулоциты

Нейтрофилы

Базофилы

Эозинофилы

Лимфоциты

Моноциты

Палочкоядерные

Сегментоядерные

Рез-ты подсчета

Состав крови. Периферическая кровь состоит из жидкой части-плазмы и взвешенных в ней форменных элементов или кровяных клеток (эритроцитов, лейкоцитов, тромбоцитов). Если дать крови отстояться или провести ее центрифугирование, предварительно смешав с противосвертывающим веществом, то образуются два резко отличающихся друг от друга слоя: верхний-прозрачный, бесцветный или слегка желтоватый-плазма крови; нижний-красного цвета, состоящий из эритроцитов и тромбоцитов. Лейкоциты за счет меньшей относительной плотности располагаются на поверхности нижнего слоя в виде тонкой пленки белого цвета.

Объемные соотношения плазмы и форменных элементов определяют с помощью гематокрита. В периферической крови плазма составляет приблизительно 52-58% объема крови, а форменные элементы 42- 48%.

Плазма крови, ее состав . В состав плазмы крови входят вода (90-92%) и сухой остаток (8-10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся: 1) белки плазмы - альбумины (около 4,5%), глобулины (2-3,5%), фибриноген (0,2-0,4%). Общее количество белка в плазме составляет 7-8%; 2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество остаточного азота 11-15 ммоль/л (30-40 мг%). 3) безазотистые органические вещества: глюкоза 4,4-6,65 ммоль/л (80-120 мг%), нейтральные жиры, липиды;

4) ферменты и проферменты: некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др. Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы -Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3. Объем крови – 5 - 6 л или 6 - 8% от массы тела. Удельная плотность крови –1050 – 1060 г/л, в том числе: плазмы – 1025 – 1034 г/л, эритроцитов – 1090 г/л. Удельная плотность крови зависит от содержания эритроцитов, а в плазме – от концентрации белков. Гематокритное число – количество форменных элементов крови, % от общего объема крови – 40 – 45% (или 0,40 – 0,45). Один из ведущих клинических показателей крови, отражающий соотношение между форменными элементами крови и жидкой ее частью.

Белковый состав крови: Общее количество белка крови 60-80г/л. Различают несколько белковых фракций, выполняющих специфические функции. Альбумины (40-60г/л) обладают высокой коллоидно-осмотической активностью. Глобулины , ,  (20 - 40 г/л) выполняют транспортную функцию для переноса ионов, гормонов, липидов, создают гуморальный иммунитет, образуя различные антитела, называемые иммуноглобулинами (IgM, IgG). Фибриноген (2-4г/л)главный фактор механизма свертывания крови.

2. Свертывающая система крови. Физиологическая остановка кровотечений. Свертывающая система крови -совокупность органов и тканей, которые синтезируют и утилизируют факторы, обеспечивающие свертываемость крови.

Факторы свертывания крови.

Плазменные

I. Фибриноген

II. Протромбин

III. Тканевой тромбопластин

V. Глобулин-акцелератор

VI. Исключен из списка

VII. Проконвертин

VIII. Антигемофилический глобулин (АГГ- А)

IX. Фактор Кристмаса (АГГ-В)

X. Фактор Стюарта-Прауэра

XI. Предшественник плазменного тромбопластина (АГГ-С)

XII. Фактор Хагемана или фактор контакта

XIII. Фибрин-стабилизирующий фактор (фибриназа)

Пластинчатые (факторы тромбоцитов – всего 14)

1ф – АС- глобулин тромбоцитов

2ф – Тромбин-акцелератор

3ф – Тромбопластин тромбоцитов (фосфолипид)

4ф – Антигепариновый фактор

5ф – Тромбоцитарный фибриноген

6ф – Ретрактозим

7ф – Антифибринолизин

8ф – Серотонин

Тканевые

Фазы сосудисто-тромбоцитарного гемостаза

Рефлекторный спазм поврежденных сосудов

Адгезия тромбоцитов (факторы - коллаген, тромбоксан, NO)

Агрегация (скучивание) тромбоцитов (тромбин, адреналин, АДФ)

Обратимая

Необратимая

На стадии агрегации разрушаются тромбоциты, выходит протромбин (со слов Комковой)

Выход БАВ

ФАЗЫ СВЕРТЫВАНИЯ: Образование протромбиназы. Внешняя 4-5мин, внутренняя 3-5 сек

Образование тромбина (3-5сек)

Образование фибрина (3-5 секунд)

Стабилизация фибрина и ретракция сгустка (минуты)


Фибринолиз (часы)

3. Противосвертывающая система. Блокаторы фибринолиза. ДВС-синдром. Клиника, диагностика, лечение. Цель: - поддержание крови в жидком состоянии; ограничение тромбообразования.

Поддержание крови в жидком состоянии обеспечивается благодаря движению крови адсорбции эндотелием коагуляционных факторов действию физиологических антикоагулянтов. Физиологические антикоагулянты в соответствии с механизмом действия делятся на три основные группы:

1) антитромбопластины - вещества, обладающие антитромбопластическим и антипротромбиназным действием;

2) антитромбины - вещества, связывающие тромбин;

3) антифибрины - ингибиторы самосборки фибрина.

Различают физиологические антикоагулянты:

1.Первичные антикоагулянты (антитромбин III, гепарин, a2-макроглобулин, a1-антитрипсин, протеин С, протеин S, тромбомодулин, ингибитор внешнего пути свертывания (TFPI)):

Постоянно содержатся в крови

Синтез в организме не зависит от активности системы

Выделяются в кровоток с постоянной скоростью

Взаимодействуют с активными факторами свертывания, вызывая их нейтрализацию.

2. Вторичные антикоагулянты (антитромбин I (фибрин), антитромбин IX, антитромбопластины, ауто-II-антикоагулянт, фибринопептиды, метафактор Vа, продукты деградации фибрина (ПДФ))

Образуются в процессе гемокоагуляции и фибринолиза

Являются результатом дальнейшей ферментативной деградации некоторых коагуляционных факторов.

Блокаторы фибринолиза: α2-антиплазмин-который вызывает связывание плазмина,трипсина, калликреина,урокиназы,тканевой активатор плазминогена;α1-протеазный ингибитор; альфа2-макроглобулин; C1-протеазный ингибитор; ингибиторы активатора плазминогена, вырабатываемые в эндотелии,фибробластами,макрофагамиимоноцитами.

ДВС-синдром (диссеминированное внутрисосудистое свёртывание)-нарушенная свёртываемость крови по причине массивного освобождения из тканей тромбопластических веществ (сочетание массивного тромбообразования со сниженной свертываемостью крови).

Причины: -тяжелые травмы; -осложнения беременности и родов; - шок; - бактериальный сепсис; - трансплантация

В клинической картине ДВС-синдрома отмечаются:

в 1-й стадии-симптомы основного заболевания, преобладание генерализованного тромбоза, гиповолемия, нарушение метаболизма.

во 2-й стадии-признаки блокады системы микроциркуляции паренхиматозных органов, геморрагический синдром (петехиально-пурпурный тип кровоточивости).

в 3-й стадии - признаки полиорганной недостаточности(острая дыхательная, сердечно-сосудистая, печеночная, почечная,парезкишечника) и метаболические нарушения (гипокалиемия, гипопротеинемия, метаболический синдром (петехии, гематомы, кровоточивость из слизистых оболочек, массивные желудочно-кишечные, легочные, внутричерепные и другие кровотечения, кровоизлияния в жизненно важные органы).

в 4-й стадии (при благоприятном исходе) показатели гемостаза постепенно нормализуются.

Диагностика: увеличение времени свертываемости (до 60мин); сгусток не образуется; тромбоцитопения.

Лечение:

Немедленное переливание минимум 1 литра свежезамороженной плазмы в течение 40 - 60 мин

Гепарин- внутривенно в начальной дозе 1000 ЕД/час (суточная доза гепарина будет уточнена после анализа коагулограммы)

Купирование шока: инфузии кровезаменителей, глюкокортикоидов, наркотические анальгетики, допамин

Антиагрегатная терапия: курантил, трентал

Активация фибринолиза: никотиновая кислота

4. Классификация кровотечений по причине возникновения и виду кровоточащего сосуда, по отношению к внешней среде, клиническим проявлениям и времени возникновения. Факторы, определяющие объем и тяжесть клинических проявлений кровопотери.

В зависимости от причины возникновения:

Мех.повреждения, разрыв сосуда (открытые, закрытые травмы) -аррозионные (прорастание опухоли, деструктивное воспаление) -диапедезные (повышена проницаемость мелких сосудов) -нарушение хим.состава, изм-е свертывающей и противосвертывающей систем.

С учетом вида кровоточащего сосуда:

Артериальные (алая кровь пульсирующей струей) -венозные (темная кровь, истечение постоянное) -артериовенозные -капиллярные (артериальная и венозная кровь, кровоточит вся раневая поверхность) -паренхиматозные (в паренхиматозных органах, капиллярные, трудно останавливаются).

По отношению к внешней среде и по клин.проявлениям:

Наружные (кровь изливается во внешнюю среду) -внутренние (в полости и ткани, серозные полости) -скрытые (без клин.признаков)

По времени возникновения

Первичные (сразу после повреждения) -вторичные (после остановки первичного), ранние и поздние.

Факторы, определяющие объем кровопотери и исход. Объем и скорость (быстро, 1/3 ОЦК – опасна для жизни, половина ОЦК – смертельна). Наиболее быстро - из крупных артерий. При поперечном разрыве внутренняя оболочка вворачивается внутрь, активное тромбообразование, возможна самостоятельная остановка кр-я. На объем влияет состояние сверт. и п/сверт. систем. Общее состояние организма. Неблагоприятно: травматический шок, исходная анемия, истощающие заболевания, длительные операции, сердечная недост-ть, нарушение свертывания. Скорость адаптапции к кровопотере. Легче адаптируются женщины и доноры. Условия внешней среды. Плохо: перегревание и переохлаждение. Возраст и пол. Тяжелее: дети и престарелые.

2024 psy-logo.ru. Образование это просто.